1 Introduction Physical and numerical models are constructed to investigate the evolution and mechanism of salt migration driven by tectonic processes.In recent years,we have designed and ran series of models to simul...1 Introduction Physical and numerical models are constructed to investigate the evolution and mechanism of salt migration driven by tectonic processes.In recent years,we have designed and ran series of models to simulate salt展开更多
A series of saline soil-related problems,including salt expansion and collapse,frost heave and thaw settlement,threaten the safety of the road traffic and the built infrastructure in cold regions.This article presents...A series of saline soil-related problems,including salt expansion and collapse,frost heave and thaw settlement,threaten the safety of the road traffic and the built infrastructure in cold regions.This article presents a comprehensive review of the physical and mechanical properties,salt migration mechanisms of saline soil in cold environment,and the countermeasures in practice.It is organized as follows:(1)The basic physical characteristics;(2)The strength criteria and constitutive models;(3)Water and salt migration characteristics and mechanisms;and(4)Countermeasures of frost heave and salt expansion.The review provides a holistic perspective for recent progress in the strength characteristics,mechanisms of frost heave and salt expansion,engineering countermeasures of saline soil in cold regions.Future research is proposed on issues such as the effects of salt erosion on concrete and salt corrosion of metal under the joint action of evaporation and freeze-thaw cycles.展开更多
Most salmonid taxa have an anadromous life history strategy, whereby fish migrate to saltwater habitats for a growth period before returning to freshwater habitats for spawning. Moreover, several species are character...Most salmonid taxa have an anadromous life history strategy, whereby fish migrate to saltwater habitats for a growth period before returning to freshwater habitats for spawning. Moreover, several species are characterized by different life history tactics whereby resident and anadromous forms may occur in genetically differentiated populations within a same species, as well as polymorphism within a population. The molecular mechanisms underlying the physiological differences between anadromous and resident forms during the first transition from freshwater to saltwater environments are only partially understood. Insofar re- search has typically focused on species of the genus Salmo. Here, using a 16,000 cDNA array, we tested the hypothesis that ana- dromous brook charr Salvelinus fontinalis are characterized by differences in their transcriptome relative to resident brook charr before the anadromous fish migration. Families originating from parapatric populations of anadromous and resident charr were reared in controlled environments mimicking natural temperature and photoperiod, and sampled in spring, while still in fresh wa- ter. While anadromous and resident charr showed similar transcriptome profiles in white muscle, they were characterized by striking differences in their gill transcriptome profiles. Genes that were upregulated in the gills of anadromous charr were princi- pally involved in metabolism (mitochondrial electron transport chain, glucose metabolism, and protein synthesis), development (tissue differentiation) and innate immunity. We discuss the nature of these transcriptomic differences in relation to molecular mechanisms underlying the expression of anadromous and resident life history tactics and suggest that the anadromous charr express some of the molecular processes present in other migratory salmonids [Current Zoology 58 (1): 158-170, 2012].展开更多
基金supported by China Geological Survey Bureau potash resources investigation and evaluation project (1212011085524)NSFC projects (40872134, 41272227 )
文摘1 Introduction Physical and numerical models are constructed to investigate the evolution and mechanism of salt migration driven by tectonic processes.In recent years,we have designed and ran series of models to simulate salt
基金This research was supported by the National Key Research and Development Program of China(Grant No.2018YFC0809605)the National Natural Science Foundation of China(Grant Nos.41230630,41601074)+1 种基金the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant No.QYZDY-SSW-DQC015)Science and Technology Plan Project of Tibet(XZ201801-GB-07).
文摘A series of saline soil-related problems,including salt expansion and collapse,frost heave and thaw settlement,threaten the safety of the road traffic and the built infrastructure in cold regions.This article presents a comprehensive review of the physical and mechanical properties,salt migration mechanisms of saline soil in cold environment,and the countermeasures in practice.It is organized as follows:(1)The basic physical characteristics;(2)The strength criteria and constitutive models;(3)Water and salt migration characteristics and mechanisms;and(4)Countermeasures of frost heave and salt expansion.The review provides a holistic perspective for recent progress in the strength characteristics,mechanisms of frost heave and salt expansion,engineering countermeasures of saline soil in cold regions.Future research is proposed on issues such as the effects of salt erosion on concrete and salt corrosion of metal under the joint action of evaporation and freeze-thaw cycles.
文摘Most salmonid taxa have an anadromous life history strategy, whereby fish migrate to saltwater habitats for a growth period before returning to freshwater habitats for spawning. Moreover, several species are characterized by different life history tactics whereby resident and anadromous forms may occur in genetically differentiated populations within a same species, as well as polymorphism within a population. The molecular mechanisms underlying the physiological differences between anadromous and resident forms during the first transition from freshwater to saltwater environments are only partially understood. Insofar re- search has typically focused on species of the genus Salmo. Here, using a 16,000 cDNA array, we tested the hypothesis that ana- dromous brook charr Salvelinus fontinalis are characterized by differences in their transcriptome relative to resident brook charr before the anadromous fish migration. Families originating from parapatric populations of anadromous and resident charr were reared in controlled environments mimicking natural temperature and photoperiod, and sampled in spring, while still in fresh wa- ter. While anadromous and resident charr showed similar transcriptome profiles in white muscle, they were characterized by striking differences in their gill transcriptome profiles. Genes that were upregulated in the gills of anadromous charr were princi- pally involved in metabolism (mitochondrial electron transport chain, glucose metabolism, and protein synthesis), development (tissue differentiation) and innate immunity. We discuss the nature of these transcriptomic differences in relation to molecular mechanisms underlying the expression of anadromous and resident life history tactics and suggest that the anadromous charr express some of the molecular processes present in other migratory salmonids [Current Zoology 58 (1): 158-170, 2012].