Cooperative guidance problems of multiple missiles are considered in this article. A cooperative guidance scheme, where coordination algorithms and local guidance laws are combined together, is proposed. This scheme a...Cooperative guidance problems of multiple missiles are considered in this article. A cooperative guidance scheme, where coordination algorithms and local guidance laws are combined together, is proposed. This scheme actually builds up a hierarchical cooperative guidance architecture, which may provide a general solution to the multimissile cooperative guidance problems. In the case of salvo attacks which require missiles to hit the target simultaneously, both centralized and distributed coordination algorithms are derived based on the impact-time-control guidance (ITCG) law. Numerical simulations are performed to demonstrate the effectiveness of the proposed approaches.展开更多
Salvo attacking a surface target by multiple missiles is an effective tactic to enhance the lethality and penetrate the defense system. However, existing cooperative guidance laws in the midcourse or terminal course a...Salvo attacking a surface target by multiple missiles is an effective tactic to enhance the lethality and penetrate the defense system. However, existing cooperative guidance laws in the midcourse or terminal course are not suitable for long-and medium-range missiles or stand-off attacking. Because the initial conditions of cooperative terminal guidance that are generally generated from the mid-course flight may not lead to a successful cooperative terminal guidance without proper mid-course flight adjustment. Meanwhile, cooperative guidance in the mid-course cannot solely guarantee the accuracy of a simultaneous arrival of multiple missiles. Therefore, a joint mid-course and terminal course cooperative guidance law is developed. By building a distinct leader-follower framework, this paper proposes an efficient coordinated Dubins path planning method to synchronize the arrival time of all engaged missiles in the mid-course flight. The planned flight can generate proper initial conditions for cooperative terminal guidance, and also benefit an earliest simultaneous arrival. In the terminal course, an existing cooperative proportional navigation guidance law guides all the engaged missiles to arrive at a target accurately and simultaneously.The integrated guidance law for an intuitive application is summarized. Simulations demonstrate that the proposed method can generate fast and accurate salvo attack.展开更多
This paper proposes a solution for the problem of cooperative salvo attack of multiple cruise missiles against targets in a group. Synchronization of the arrival time of missiles to hit their common target, minimizing...This paper proposes a solution for the problem of cooperative salvo attack of multiple cruise missiles against targets in a group. Synchronization of the arrival time of missiles to hit their common target, minimizing the time consumption of attack and maximizing the expected damage to group targets are taken into consideration simultaneously. These operational objectives result in a hierarchical mixed-variable optimization problem which includes two types of subproblems, namely the multi-objective missile-target assignment(MOMTA) problem at the upper level and the time-optimal coordinated path planning(TOCPP) problems at the lower level. In order to solve the challenging problem, a recently proposed coordinated path planning method is employed to solve the TOCPP problems to achieve the soonest salvo attack against each target. With the aim of finding a more competent solver for MOMTA, three state-of-the-art multi-objective optimization methods(MOMs),namely NSGA-II, MOEA/D and DMOEA-εC, are adopted. Finally, a typical example is used to demonstrate the advantage of the proposed method. A simple rule-based method is also employed for comparison. Comparative results show that DMOEA-εC is the best choice among the three MOMs for solving the MOMTA problem. The combination of DMOEA-εC for MOMTA and the coordinated path planning method for TOCPP can generate obviously better salvo attack schemes than the rule-based method.展开更多
This paper analyses the issue of impact time control of super-cavitation weapons impact fixed targets which mainly refer to the ships or submarines who lost power, but still have combat capability. Control over impact...This paper analyses the issue of impact time control of super-cavitation weapons impact fixed targets which mainly refer to the ships or submarines who lost power, but still have combat capability. Control over impact time constraints of guidance law(ITCG) is derived by using sliding mode control(SMC) and Lyapunov stability theorem. The expected impact time is realized by using the notion of attack process and estimated time-to-go to design sliding mode surface(SMS). ITCG contains equivalent and discontinuous guidance laws, once state variables arrive at SMS,the equivalent guidance law keeps the state variables on SMS,then the discontinuous guidance law enforces state variables to move and reach SMS. The singularity problem of ITCG is also analyzed. Theoretical analysis and numerical simulation results are given to test the effectiveness of ITCG designed in this paper.展开更多
Guidance problems with flight time constraints are considered in this article. A new virtual leader scheme is used for design of guidance laws with time constraints. The core idea of this scheme is to adopt a virtual ...Guidance problems with flight time constraints are considered in this article. A new virtual leader scheme is used for design of guidance laws with time constraints. The core idea of this scheme is to adopt a virtual leader for real missiles to convert a guidance problem with time constraints to a nonlinear tracking problem,thereby making it possible to settle the problem with a variety of control methods. A novel time-constrained guidance (TCG) law, which can control the flight time of missiles to a prescribed time,is designed by using the virtual leader scheme and stability method. The TCG law is a combination of the well-known proportional navigation guidance(PNG) law and the feedback of flight time error. What' s more, this law is free of singularities and hence yields better performances in comparison with optimal guidance laws with time constraints. Nonlinear simulations demonstrate the effectiveness of the proposed law.展开更多
基金Foundation items: National Natural Science Foundation of China (60674103) Aeronautical Science Foundation of China (2006ZC51026)
文摘Cooperative guidance problems of multiple missiles are considered in this article. A cooperative guidance scheme, where coordination algorithms and local guidance laws are combined together, is proposed. This scheme actually builds up a hierarchical cooperative guidance architecture, which may provide a general solution to the multimissile cooperative guidance problems. In the case of salvo attacks which require missiles to hit the target simultaneously, both centralized and distributed coordination algorithms are derived based on the impact-time-control guidance (ITCG) law. Numerical simulations are performed to demonstrate the effectiveness of the proposed approaches.
基金supported by the National Natural Science Foundation of China (No.61304215)supported by the Beijing Education Committee Cooperation Building Foundation Project (CSYS100070417)
文摘Salvo attacking a surface target by multiple missiles is an effective tactic to enhance the lethality and penetrate the defense system. However, existing cooperative guidance laws in the midcourse or terminal course are not suitable for long-and medium-range missiles or stand-off attacking. Because the initial conditions of cooperative terminal guidance that are generally generated from the mid-course flight may not lead to a successful cooperative terminal guidance without proper mid-course flight adjustment. Meanwhile, cooperative guidance in the mid-course cannot solely guarantee the accuracy of a simultaneous arrival of multiple missiles. Therefore, a joint mid-course and terminal course cooperative guidance law is developed. By building a distinct leader-follower framework, this paper proposes an efficient coordinated Dubins path planning method to synchronize the arrival time of all engaged missiles in the mid-course flight. The planned flight can generate proper initial conditions for cooperative terminal guidance, and also benefit an earliest simultaneous arrival. In the terminal course, an existing cooperative proportional navigation guidance law guides all the engaged missiles to arrive at a target accurately and simultaneously.The integrated guidance law for an intuitive application is summarized. Simulations demonstrate that the proposed method can generate fast and accurate salvo attack.
基金supported by the National Natural Science Foundation of China under Grant No.61673058the NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization under Grant No.U1609214
文摘This paper proposes a solution for the problem of cooperative salvo attack of multiple cruise missiles against targets in a group. Synchronization of the arrival time of missiles to hit their common target, minimizing the time consumption of attack and maximizing the expected damage to group targets are taken into consideration simultaneously. These operational objectives result in a hierarchical mixed-variable optimization problem which includes two types of subproblems, namely the multi-objective missile-target assignment(MOMTA) problem at the upper level and the time-optimal coordinated path planning(TOCPP) problems at the lower level. In order to solve the challenging problem, a recently proposed coordinated path planning method is employed to solve the TOCPP problems to achieve the soonest salvo attack against each target. With the aim of finding a more competent solver for MOMTA, three state-of-the-art multi-objective optimization methods(MOMs),namely NSGA-II, MOEA/D and DMOEA-εC, are adopted. Finally, a typical example is used to demonstrate the advantage of the proposed method. A simple rule-based method is also employed for comparison. Comparative results show that DMOEA-εC is the best choice among the three MOMs for solving the MOMTA problem. The combination of DMOEA-εC for MOMTA and the coordinated path planning method for TOCPP can generate obviously better salvo attack schemes than the rule-based method.
基金supported by the National Natural Science Foundation of China(5137917651679201)
文摘This paper analyses the issue of impact time control of super-cavitation weapons impact fixed targets which mainly refer to the ships or submarines who lost power, but still have combat capability. Control over impact time constraints of guidance law(ITCG) is derived by using sliding mode control(SMC) and Lyapunov stability theorem. The expected impact time is realized by using the notion of attack process and estimated time-to-go to design sliding mode surface(SMS). ITCG contains equivalent and discontinuous guidance laws, once state variables arrive at SMS,the equivalent guidance law keeps the state variables on SMS,then the discontinuous guidance law enforces state variables to move and reach SMS. The singularity problem of ITCG is also analyzed. Theoretical analysis and numerical simulation results are given to test the effectiveness of ITCG designed in this paper.
基金National Natural Science Foundation of China(60674103,60975073)National High-tech Research and Develop-ment Program of China (2006AA04Z260)+1 种基金Research Foundation forDoctoral Program of Higher Education of China (20091102110006 )Aeronautical Science Foundation of China(2008ZC13011)
文摘Guidance problems with flight time constraints are considered in this article. A new virtual leader scheme is used for design of guidance laws with time constraints. The core idea of this scheme is to adopt a virtual leader for real missiles to convert a guidance problem with time constraints to a nonlinear tracking problem,thereby making it possible to settle the problem with a variety of control methods. A novel time-constrained guidance (TCG) law, which can control the flight time of missiles to a prescribed time,is designed by using the virtual leader scheme and stability method. The TCG law is a combination of the well-known proportional navigation guidance(PNG) law and the feedback of flight time error. What' s more, this law is free of singularities and hence yields better performances in comparison with optimal guidance laws with time constraints. Nonlinear simulations demonstrate the effectiveness of the proposed law.