The three largest earthquakes in northern California since 1849 were preceded by increased decadal activity for moderate-size shocks along surrounding nearby faults. Increased seismicity, double-difference precise loc...The three largest earthquakes in northern California since 1849 were preceded by increased decadal activity for moderate-size shocks along surrounding nearby faults. Increased seismicity, double-difference precise locations of earthquakes since 1968, geodetic data and fault offsets for the 1906 great shock are used to re-examine the timing and locations of possible future large earthquakes. The physical mechanisms of regional faults like the Calaveras, Hayward and Sargent, which exhibit creep, differ from those of the northern San Andreas, which is currently locked and is not creeping. Much decadal forerunning activity occurred on creeping faults. Moderate-size earthquakes along those faults became more frequent as stresses in the region increased in the latter part of the cycle of stress restoration for major and great earthquakes along the San Andreas. They may be useful for decadal forecasts. Yearly to decadal forecasts, however, are based on only a few major to great events. Activity along closer faults like that in the two years prior to the 1989 Loma Prieta shock needs to be examined for possible yearly forerunning changes to large plate boundary earthquakes. Geodetic observations are needed to focus on identifying creeping faults close to the San Andreas. The distribution of moderate-size earthquakes increased significantly since 1990 along the Hayward fault but not adjacent to the San Andreas fault to the south of San Francisco compared to what took place in the decades prior to the three major historic earthquakes in the region. It is now clear from a re-examination of the 1989 mainshock that the increased level of moderate-size shocks in the one to two preceding decades occurred on nearby East Bay faults. Double-difference locations of small earthquakes provide structural information about faults in the region, especially their depths. The northern San Andreas fault is divided into several strongly coupled segments based on differences in seismicity.展开更多
In this article,we review our previous research for spatial and temporal characterizations of the San Andreas Fault(SAF)at Parkfield,using the fault-zone trapped wave(FZTW)since the middle 1980s.Parkfield,California h...In this article,we review our previous research for spatial and temporal characterizations of the San Andreas Fault(SAF)at Parkfield,using the fault-zone trapped wave(FZTW)since the middle 1980s.Parkfield,California has been taken as a scientific seismic experimental site in the USA since the 1970s,and the SAF is the target fault to investigate earthquake physics and forecasting.More than ten types of field experiments(including seismic,geophysical,geochemical,geodetic and so on)have been carried out at this experimental site since then.In the fall of 2003,a pair of scientific wells were drilled at the San Andreas Fault Observatory at Depth(SAFOD)site;the main-hole(MH)passed a~200-m-wide low-velocity zone(LVZ)with highly fractured rocks of the SAF at a depth of~3.2 km below the wellhead on the ground level(Hickman et al.,2005;Zoback,2007;Lockner et al.,2011).Borehole seismographs were installed in the SAFOD MH in 2004,which were located within the LVZ of the fault at~3-km depth to probe the internal structure and physical properties of the SAF.On September 282004,a M6 earthquake occurred~15 km southeast of the town of Parkfield.The data recorded in the field experiments before and after the 2004 M6 earthquake provided a unique opportunity to monitor the co-mainshock damage and post-seismic heal of the SAF associated with this strong earthquake.This retrospective review of the results from a sequence of our previous experiments at the Parkfield SAF,California,will be valuable for other researchers who are carrying out seismic experiments at the active faults to develop the community seismic wave velocity models,the fault models and the earthquake forecasting models in global seismogenic regions.展开更多
Finite Element (FE) modeling under plane stress condition is used to analyze the fault type variation with depth along and around the San Andreas Fault (SAF) zone. In this simulation elastic rheology was used and was ...Finite Element (FE) modeling under plane stress condition is used to analyze the fault type variation with depth along and around the San Andreas Fault (SAF) zone. In this simulation elastic rheology was used and was thought justifiable as the variation in depth from 0.5 km to 20 km was considered. Series of calculations were performed with the variation in domain properties. Three types of models were created based on simple geological map of California, namely, 1) single domain model considering whole California as one homogeneous domain, 2) three domains model including the North American plate, Pacific plate, and SAF zone as separate domains, and 3) Four domains model including the three above plus the Garlock Fault zone. Mohr-Coulomb failure criterion and Byerlee's law were used for the calculation of failure state. All the models were driven by displacement boundary condition imposing the fixed North American plate and Pacific plate motion along N34°W vector up to the northern terminus of SAF and N50°E vector motion for the subducting the Gorda and Juan de Fuca plates. Our simulated results revealed that as the depth increased, the fault types were generally normal, and at shallow depth greater strike slip and some thrust faults were formed. It is concluded that SAF may be terminated as normal fault at depth although the surface expression is clearly strike slip.展开更多
文摘The three largest earthquakes in northern California since 1849 were preceded by increased decadal activity for moderate-size shocks along surrounding nearby faults. Increased seismicity, double-difference precise locations of earthquakes since 1968, geodetic data and fault offsets for the 1906 great shock are used to re-examine the timing and locations of possible future large earthquakes. The physical mechanisms of regional faults like the Calaveras, Hayward and Sargent, which exhibit creep, differ from those of the northern San Andreas, which is currently locked and is not creeping. Much decadal forerunning activity occurred on creeping faults. Moderate-size earthquakes along those faults became more frequent as stresses in the region increased in the latter part of the cycle of stress restoration for major and great earthquakes along the San Andreas. They may be useful for decadal forecasts. Yearly to decadal forecasts, however, are based on only a few major to great events. Activity along closer faults like that in the two years prior to the 1989 Loma Prieta shock needs to be examined for possible yearly forerunning changes to large plate boundary earthquakes. Geodetic observations are needed to focus on identifying creeping faults close to the San Andreas. The distribution of moderate-size earthquakes increased significantly since 1990 along the Hayward fault but not adjacent to the San Andreas fault to the south of San Francisco compared to what took place in the decades prior to the three major historic earthquakes in the region. It is now clear from a re-examination of the 1989 mainshock that the increased level of moderate-size shocks in the one to two preceding decades occurred on nearby East Bay faults. Double-difference locations of small earthquakes provide structural information about faults in the region, especially their depths. The northern San Andreas fault is divided into several strongly coupled segments based on differences in seismicity.
文摘In this article,we review our previous research for spatial and temporal characterizations of the San Andreas Fault(SAF)at Parkfield,using the fault-zone trapped wave(FZTW)since the middle 1980s.Parkfield,California has been taken as a scientific seismic experimental site in the USA since the 1970s,and the SAF is the target fault to investigate earthquake physics and forecasting.More than ten types of field experiments(including seismic,geophysical,geochemical,geodetic and so on)have been carried out at this experimental site since then.In the fall of 2003,a pair of scientific wells were drilled at the San Andreas Fault Observatory at Depth(SAFOD)site;the main-hole(MH)passed a~200-m-wide low-velocity zone(LVZ)with highly fractured rocks of the SAF at a depth of~3.2 km below the wellhead on the ground level(Hickman et al.,2005;Zoback,2007;Lockner et al.,2011).Borehole seismographs were installed in the SAFOD MH in 2004,which were located within the LVZ of the fault at~3-km depth to probe the internal structure and physical properties of the SAF.On September 282004,a M6 earthquake occurred~15 km southeast of the town of Parkfield.The data recorded in the field experiments before and after the 2004 M6 earthquake provided a unique opportunity to monitor the co-mainshock damage and post-seismic heal of the SAF associated with this strong earthquake.This retrospective review of the results from a sequence of our previous experiments at the Parkfield SAF,California,will be valuable for other researchers who are carrying out seismic experiments at the active faults to develop the community seismic wave velocity models,the fault models and the earthquake forecasting models in global seismogenic regions.
文摘Finite Element (FE) modeling under plane stress condition is used to analyze the fault type variation with depth along and around the San Andreas Fault (SAF) zone. In this simulation elastic rheology was used and was thought justifiable as the variation in depth from 0.5 km to 20 km was considered. Series of calculations were performed with the variation in domain properties. Three types of models were created based on simple geological map of California, namely, 1) single domain model considering whole California as one homogeneous domain, 2) three domains model including the North American plate, Pacific plate, and SAF zone as separate domains, and 3) Four domains model including the three above plus the Garlock Fault zone. Mohr-Coulomb failure criterion and Byerlee's law were used for the calculation of failure state. All the models were driven by displacement boundary condition imposing the fixed North American plate and Pacific plate motion along N34°W vector up to the northern terminus of SAF and N50°E vector motion for the subducting the Gorda and Juan de Fuca plates. Our simulated results revealed that as the depth increased, the fault types were generally normal, and at shallow depth greater strike slip and some thrust faults were formed. It is concluded that SAF may be terminated as normal fault at depth although the surface expression is clearly strike slip.