Globally,2023 was the warmest observed year on record since at least 1850 and,according to proxy evidence,possibly of the past 100000 years.As in recent years,the record warmth has again been accompanied with yet more...Globally,2023 was the warmest observed year on record since at least 1850 and,according to proxy evidence,possibly of the past 100000 years.As in recent years,the record warmth has again been accompanied with yet more extreme weather and climate events throughout the world.Here,we provide an overview of those of 2023,with details and key background causes to help build upon our understanding of the roles of internal climate variability and anthropogenic climate change.We also highlight emerging features associated with some of these extreme events.Hot extremes are occurring earlier in the year,and increasingly simultaneously in differing parts of the world(e.g.,the concurrent hot extremes in the Northern Hemisphere in July 2023).Intense cyclones are exacerbating precipitation extremes(e.g.,the North China flooding in July and the Libya flooding in September).Droughts in some regions(e.g.,California and the Horn of Africa)have transitioned into flood conditions.Climate extremes also show increasing interactions with ecosystems via wildfires(e.g.,those in Hawaii in August and in Canada from spring to autumn 2023)and sandstorms(e.g.,those in Mongolia in April 2023).Finally,we also consider the challenges to research that these emerging characteristics present for the strategy and practice of adaptation.展开更多
The micaceous weathered granitic soil(WGS)is frequently encountered in civil engineering worldwide,unfortunately little information is available regarding how mica affects the physico-mechanical behaviors of WGS.This ...The micaceous weathered granitic soil(WGS)is frequently encountered in civil engineering worldwide,unfortunately little information is available regarding how mica affects the physico-mechanical behaviors of WGS.This study prepares reconstituted WGS with different mica contents by removing natural mica in theWGS,and then mixes it with commercial mica powders.The geotechnical behavior as well as the microstructures of the mixtures are characterized.The addition of mica enables the physical indices of WGS to be specific combinations of coarser gradation and high permeability but high Atterberg limits.However,high mica content in WGS was found to be associated with undesirable mechanical properties,including increased compressibility,disintegration,and swelling potential,as well as poor compactability and low effective frictional angle.Microstructural analysis indicates that the influence of mica on the responses of mixtures originates from the intrinsic nature of mica as well as the particle packing being formed withinWGS.Mica exists in the mixture as stacks of plates that form a spongy structure with high compressibility and swelling potential.Pores among the plates give the soil high water retention and high Atterberg limits.Large pores are also generated by soil particles with bridging packing,which enhances the permeability and water-soil interactions upon immersion.This study provides a microlevel understanding of how mica dominates the behavior of WGS and provides new insights into the effective stabilization and improvement of micaceous soils.展开更多
Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantil...Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks.展开更多
Artificial intelligence(AI)has already demonstrated its proficiency at difficult scientific tasks like predicting how proteins will fold and identifying new astronomical objects in masses of observational data[1].Now,...Artificial intelligence(AI)has already demonstrated its proficiency at difficult scientific tasks like predicting how proteins will fold and identifying new astronomical objects in masses of observational data[1].Now,recent results suggest that AI also excels at weather forecasting.For global predictions,GraphCast,an AI system developed by Google subsidiary DeepMind(London,UK),outperforms the state-of-the-art model from the European Centre for Medium-Range Weather Forecasts(ECMWF),providing more accurate projections of variables such as temperature and humidity 90%of the time[2,3].Other AI systems,including Pangu-Weather from the Chinese tech company Huawei(Shenzhen,China)[4],can also match or beat traditional global forecasting models.展开更多
We are evaluating dryland cotton production in Martin County, Texas, measuring cotton lint yield per unit of rainfall. Our goal is to collect rainfall data per 250 - 400 ha. Upon selection of a rainfall gauge, we real...We are evaluating dryland cotton production in Martin County, Texas, measuring cotton lint yield per unit of rainfall. Our goal is to collect rainfall data per 250 - 400 ha. Upon selection of a rainfall gauge, we realized that the cost of using, for example, a tipping bucket-type rain gauge would be too expensive and thus searched for an alternative method. We selected an all-in-one commercially available weather station;hereafter, referred to as a Personal Weather Station (PWS) that is both wireless and solar powered. Our objective was to evaluate average measurements of rainfall obtained with the PWS and to compare these to measurements obtained with an automatic weather station (AWS). For this purpose, we installed four PWS deployed within 20 m of the Plant Stress and Water Conservation Meteorological Tower that was used as our AWS, located at USDA-ARS Cropping Systems Research Laboratory, Lubbock, TX. In addition, we measured and compared hourly average values of short-wave irradiance (R<sub>g</sub>), air temperature (T<sub>air</sub>) and relative humidity (RH), and wind speed (WS), and calculated values of dewpoint temperature (T<sub>dew</sub>). This comparison was done over a 242-day period (1 October 2022-31 May 2023) and results indicated that there was no statistical difference in measurements of rainfall between the PWS and AWS. Hourly average values of R<sub>g</sub> measured with the PWS and AWS agreed on clear days, but PWS measurements were higher on cloudy days. There was no statistical difference between PWS and AWS hourly average measurements of T<sub>air</sub>, RH, and calculated T<sub>dew</sub>. Hourly average measurements of R<sub>g</sub> and WS were more variable. We concluded that the PWS we selected will provide adequate values of rainfall and other weather variables to meet our goal of evaluating dryland cotton lint yield per unit rainfall.展开更多
The output of photovoltaic power stations is significantly affected by environmental factors,leading to intermittent and fluctuating power generation.With the increasing frequency of extreme weather events due to glob...The output of photovoltaic power stations is significantly affected by environmental factors,leading to intermittent and fluctuating power generation.With the increasing frequency of extreme weather events due to global warming,photovoltaic power stations may experience drastic reductions in power generation or even complete shutdowns during such conditions.The integration of these stations on a large scale into the power grid could potentially pose challenges to systemstability.To address this issue,in this study,we propose a network architecture based on VMDKELMfor predicting the power output of photovoltaic power plants during severe weather events.Initially,a grey relational analysis is conducted to identify key environmental factors influencing photovoltaic power generation.Subsequently,GMM clustering is utilized to classify meteorological data points based on their probabilities within different Gaussian distributions,enabling comprehensive meteorological clustering and extraction of significant extreme weather data.The data are decomposed using VMD to Fourier transform,followed by smoothing processing and signal reconstruction using KELM to forecast photovoltaic power output under major extreme weather conditions.The proposed prediction scheme is validated by establishing three prediction models,and the predicted photovoltaic output under four major extreme weather conditions is analyzed to assess the impact of severe weather on photovoltaic power station output.The experimental results show that the photovoltaic power output under conditions of dust storms,thunderstorms,solid hail precipitation,and snowstorms is reduced by 68.84%,42.70%,61.86%,and 49.92%,respectively,compared to that under clear day conditions.The photovoltaic power prediction accuracies,in descending order,are dust storms,solid hail precipitation,thunderstorms,and snowstorms.展开更多
Both analyzing a large amount of space weather observed data and alleviating personal experience bias are significant challenges in generating artificial space weather forecast products.With the use of natural languag...Both analyzing a large amount of space weather observed data and alleviating personal experience bias are significant challenges in generating artificial space weather forecast products.With the use of natural language generation methods based on the sequence-to-sequence model,space weather forecast texts can be automatically generated.To conduct our generation tasks at a fine-grained level,a taxonomy of space weather phenomena based on descriptions is presented.Then,our MDH(Multi-Domain Hybrid)model is proposed for generating space weather summaries in two stages.This model is composed of three sequence-to-sequence-based deep neural network sub-models(one Bidirectional Auto-Regressive Transformers pre-trained model and two Transformer models).Then,to evaluate how well MDH performs,quality evaluation metrics based on two prevalent automatic metrics and our innovative human metric are presented.The comprehensive scores of the three summaries generating tasks on testing datasets are 70.87,93.50,and 92.69,respectively.The results suggest that MDH can generate space weather summaries with high accuracy and coherence,as well as suitable length,which can assist forecasters in generating high-quality space weather forecast products,despite the data being starved.展开更多
With the development of the hyperspectral remote sensing technique,extensive chemical weathering profiles have been identified on Mars.These weathering sequences,formed through precipitation-driven leaching processes,...With the development of the hyperspectral remote sensing technique,extensive chemical weathering profiles have been identified on Mars.These weathering sequences,formed through precipitation-driven leaching processes,can reflect the paleoenvironments and paleoclimates during pedogenic processes.The specific composition and stratigraphic profiles mirror the mineralogical and chemical trends observed in weathered basalts on Hainan Island in south China.In this study,we investigated the laboratory reflectance spectra of a 53-m-long drilling core of a thick basaltic weathering profile collected from Hainan Island.We established a quantitative spectral model by combining the genetic algorithm and partial least squares regression(GA-PLSR)to predict the chemical properties(SiO2,Al2O3,Fe2O3)and index of laterization(IOL).The entire sample set was divided into a calibration set of 25 samples and a validation set of 12 samples.Specifically,the GA was used to select the spectral subsets for each composition,which were then input into the PLSR model to derive the chemical concentration.The coefficient of determination(R2)values on the validation set for SiO2,Al2O3,Fe2O3,and the IOL were greater than 0.9.In addition,the effects of various spectral preprocessing techniques on the model accuracy were evaluated.We found that the spectral derivative treatment boosted the prediction accuracy of the GA-PLSR model.The improvement achieved with the second derivative was more pronounced than when using the first derivative.The quantitative model developed in this work has the potential to estimate the contents of similar weathering basalt products,and thus infer the degree of alteration and provide insights into paleoclimatic conditions.Moreover,the informative bands selected by the GA can serve as a guideline for designing spectral channels for the next generation of spectrometers.展开更多
The demand for broadband data services on high-speed trains is rapidly growing as more people commute between their homes and workplaces.However,current radio frequency(RF)technology cannot adequately meet this demand...The demand for broadband data services on high-speed trains is rapidly growing as more people commute between their homes and workplaces.However,current radio frequency(RF)technology cannot adequately meet this demand.In order to address the bandwidth constraint,a technique known as free space optics(FSO)has been proposed.This paper presents a mathematical derivation and formulation of curve track G2T-FSO(Ground-to-train Free Space Optical)model,where the track radius characteristics is 2667 m,divergence angle track is 1.5°for train velocity at V=250 km/h.Multiple transmitter configurations are proposed to maximize coverage range and enhance curve track G2T-FSO link performance under varying weather conditions.The curved track G2T-FSO model was evaluated in terms of received power,signal-to-noise ratio(SNR),bit error rate(BER),and eye diagrams.The results showed maximum coverage lengths of 618,505,365,and 240 m for 4Tx/1Rx,3Tx/1Rx,2Tx/1Rx,and 1Tx/1Rx configurations,respectively.The analyzed results demonstrate that the G2T-FSO link can be effectively implemented under various weather conditions.展开更多
his study focused on exploring the specificity of mechanical behavior for completely weathered granite,as a special soil,by consolidated drained triaxial tests.The influences of dry density(1.60,1.70,1.80 and 1.90 g/c...his study focused on exploring the specificity of mechanical behavior for completely weathered granite,as a special soil,by consolidated drained triaxial tests.The influences of dry density(1.60,1.70,1.80 and 1.90 g/cm^(3)),confining pressure(100,200,400 and 600 kPa),and moisture content(13.0%,that is,natural moisture content)were investigated in the present work.A newly developed Duncan-Chang model was established based on the experimental data and Duncan-Chang model.The influence of each parameter on the type of the proposed model curve was also evaluated.The experimental results revealed that with varying dry density and confining pressure,the deviatoric stress–strain curves have diversified characteristics including strain-softening,strain-stabilization and strain-hardening.Under high confining pressure condition,specimens with different densities all showed strain-hardening characteristic.Whereas at the low confining pressure levels,specimens with higher densities gradually transform into softening characteristics.Except for individual compression shear failure,the deformation modes of the specimens all showed swelling deformation,and all the damaged specimens maintained good integrity.Through comparing the experiment results,the strain-softening or strain-hardening behavior of CWG specimens could be predicted following the proposed model with high accuracy.Additionally,the proposed model can accurately characterize the key mechanical indicators,such as tangent modulus,peak value and residual strength,which is simple to implement and depends on fewer parameters.展开更多
This study is thefirst attempt to assess the nature of the soil,especially on the western side of the Porali Plain in Balochistan;a new emerging agriculture hub,using weathering and pollution indices supplemented by mu...This study is thefirst attempt to assess the nature of the soil,especially on the western side of the Porali Plain in Balochistan;a new emerging agriculture hub,using weathering and pollution indices supplemented by multi-variate analysis based on geochemical data.The outcomes of this study are expected to help farmers in soil manage-ment and selecting suitable crops for the region.Twenty-five soil samples were collected,mainly from the arable land of the Porali Plain.After drying and coning-quarter-ing,soil samples were analyzed for major and trace ele-ments using the XRF technique;sieving and hydrometric methods were employed for granulometric analysis.Esti-mated data were analyzed using Excel,SPSS,and Surfer software to calculate various indices,correlation matrix,and spatial distribution.The granulometric analysis showed that 76%of the samples belonged to loam types of soil,12%to sand type,and 8%to silt type.Weathering indices:CIA,CIW,PIA,PWI,WIP,CIX,and ICV were calculated to infer the level of alteration.These indices reflect mod-erate to intense weathering;supported by K_(2)O/AI_(2)O_(3),Rb/K_(2)O,Rb/Ti,and Rb/Sr ratios.Assessment of the geo-ac-cumulation and Nemerow Pollution indices pinpoint rela-tively high concentrations of Pb,Ni,and Cr concentration in the soils.The correlation matrix and Principal Compo-nent Analysis show that the soil in this study area is mainly derived from the weathering of igneous rocks of Bela Ophiolite(Cretaceous age)and Jurassic sedimentary rocks of Mor Range having SEDEX/MVT type mineralization.Weathering may result in the undesirable accumulation of certain trace elements which adversely affects crops.展开更多
The marine accidents are among the main components of the Zanzibar Disaster Management Policy (2011) and the Zanzibar Blue Economy Policy (2020). These policies aimed to institute legal frame works and procedures for ...The marine accidents are among the main components of the Zanzibar Disaster Management Policy (2011) and the Zanzibar Blue Economy Policy (2020). These policies aimed to institute legal frame works and procedures for reducing both the frequency of marine accidents and their associated fatalities. These fatalities include deaths, permanent disabilities and loss of properties which may result into increased poverty levels as per the sustainable development goal one (SDG1) which stipulates on ending the poverty in all its forms everywhere. Thus, in the way to support these Government efforts, the influence of climate and weather on marine accidents along Zanzibar and Pemba Channels was investigated. The study used the 10 years (2013-2022) records of daily rainfall and hourly wind speed acquired from Tanzania Meteorological Authority (TMA) (for the observation stations of Zanzibar, Pemba, Dares Salaam and Tanga), and the significant wave heights data, which was freely downloaded from Globally Forecasting System (GFS-World model of 13 km resolution). The marine accident records were collected from TASAC and Zanzibar Maritime Authority (ZMA), and the anecdotal information was collected from heads of quay and boat captains in different areas of Zanzibar. The Mann Kendal test, was used to determine the slopes and trends direction of used weather parameters, while the Pearson correlations analysis and t-tests were used to understand the significance of the underlying relationship between the weather and marine accidents. The paired t-test was used to evaluate the extent to which weather parameters affect the marine accidents. Results revealed that the variability of extreme weather events (rainfall, ocean waves and wind speed) was seen to be among the key factors for most of the recorded marine accidents. For instance, in Pemba high rainfall showed an increasing trend of extreme rainfall events, while Zanzibar has shown a decreasing trend of these events. As for extreme wind events, results show that Dar es Salaam and Tanga had an increasing trend, while Zanzibar and Pemba had shown a decreasing trend. As for the monthly variability of frequencies of extreme rainfall events, March to May (MAM) season was shown to have the highest frequencies over all stations with the peaks at Zanzibar and Pemba. On the other hand, high frequency of extreme wind speed was observed from May to September with peaks in June to July, and the highest strength was observed during 09:00 to 15:00 GMT. Moreover, results revealed an increasing trend of marine accidents caused by bad weather except during November. Also, results showed that bad weather conditions contributed to 48 (32%) of all 150 recorded accidents. Further results revealed significant correlation between the extreme wind and marine accidents, with the highest strong correlation of r = 0.71 (at p ≤ 0.007) and r = 0.75 (at p ≤ 0.009) at Tanga and Pemba, indicating the occurrence of more marine accidents at the Pemba channel. Indeed, strong correlation of r = 0.6 between extreme rainfall events and marine accidents was shown in Pemba, while the correlations between extremely significant wave heights and marine accidents were r = 0.41 (at p ≤ 0.006) and r = 0.34 (p ≤ 0.0006) for Pemba and Zanzibar Channel, respectively. In conclusion, the study has shown high influence between marine accidents and bad weather events with more impacts in Pemba and Zanzibar. Thus, the study calls for more work to be undertaken to raise the awareness on marine accidents as a way to alleviate the poverty and enhance the sustainable blue economy.展开更多
Space metallurgy is an interdisciplinary field that combines planetary space science and metallurgical engineering.It involves systematic and theoretical engineering technology for utilizing planetary resources in sit...Space metallurgy is an interdisciplinary field that combines planetary space science and metallurgical engineering.It involves systematic and theoretical engineering technology for utilizing planetary resources in situ.However,space metallurgy on the Moon is challenging because the lunar surface has experienced space weathering due to the lack of atmosphere and magnetic field,making the mi-crostructure of lunar soil differ from that of minerals on the Earth.In this study,scanning electron microscopy and transmission electron microscopy analyses were performed on Chang’e-5 powder lunar soil samples.The microstructural characteristics of the lunar soil may drastically change its metallurgical performance.The main special structure of lunar soil minerals include the nanophase iron formed by the impact of micrometeorites,the amorphous layer caused by solar wind injection,and radiation tracks modified by high-energy particle rays inside mineral crystals.The nanophase iron presents a wide distribution,which may have a great impact on the electromagnetic prop-erties of lunar soil.Hydrogen ions injected by solar wind may promote the hydrogen reduction process.The widely distributed amorph-ous layer and impact glass can promote the melting and diffusion process of lunar soil.Therefore,although high-energy events on the lun-ar surface transform the lunar soil,they also increase the chemical activity of the lunar soil.This is a property that earth samples and tradi-tional simulated lunar soil lack.The application of space metallurgy requires comprehensive consideration of the unique physical and chemical properties of lunar soil.展开更多
Achieving reliable and efficient weather classification for autonomous vehicles is crucial for ensuring safety and operational effectiveness.However,accurately classifying diverse and complex weather conditions remain...Achieving reliable and efficient weather classification for autonomous vehicles is crucial for ensuring safety and operational effectiveness.However,accurately classifying diverse and complex weather conditions remains a significant challenge.While advanced techniques such as Vision Transformers have been developed,they face key limitations,including high computational costs and limited generalization across varying weather conditions.These challenges present a critical research gap,particularly in applications where scalable and efficient solutions are needed to handle weather phenomena’intricate and dynamic nature in real-time.To address this gap,we propose a Multi-level Knowledge Distillation(MLKD)framework,which leverages the complementary strengths of state-of-the-art pre-trained models to enhance classification performance while minimizing computational overhead.Specifically,we employ ResNet50V2 and EfficientNetV2B3 as teacher models,known for their ability to capture complex image features and distil their knowledge into a custom lightweight Convolutional Neural Network(CNN)student model.This framework balances the trade-off between high classification accuracy and efficient resource consumption,ensuring real-time applicability in autonomous systems.Our Response-based Multi-level Knowledge Distillation(R-MLKD)approach effectively transfers rich,high-level feature representations from the teacher models to the student model,allowing the student to perform robustly with significantly fewer parameters and lower computational demands.The proposed method was evaluated on three public datasets(DAWN,BDD100K,and CITS traffic alerts),each containing seven weather classes with 2000 samples per class.The results demonstrate the effectiveness of MLKD,achieving a 97.3%accuracy,which surpasses conventional deep learning models.This work improves classification accuracy and tackles the practical challenges of model complexity,resource consumption,and real-time deployment,offering a scalable solution for weather classification in autonomous driving systems.展开更多
Due to various technical issues,existing numerical weather prediction(NWP)models often perform poorly at forecasting rainfall in the first several hours.To correct the bias of an NWP model and improve the accuracy of ...Due to various technical issues,existing numerical weather prediction(NWP)models often perform poorly at forecasting rainfall in the first several hours.To correct the bias of an NWP model and improve the accuracy of short-range precipitation forecasting,we propose a deep learning-based approach called UNet Mask,which combines NWP forecasts with the output of a convolutional neural network called UNet.The UNet Mask involves training the UNet on historical data from the NWP model and gridded rainfall observations for 6-hour precipitation forecasting.The overlap of the UNet output and the NWP forecasts at the same rainfall threshold yields a mask.The UNet Mask blends the UNet output and the NWP forecasts by taking the maximum between them and passing through the mask,which provides the corrected 6-hour rainfall forecasts.We evaluated UNet Mask on a test set and in real-time verification.The results showed that UNet Mask outperforms the NWP model in 6-hour precipitation prediction by reducing the FAR and improving CSI scores.Sensitivity tests also showed that different small rainfall thresholds applied to the UNet and the NWP model have different effects on UNet Mask's forecast performance.This study shows that UNet Mask is a promising approach for improving rainfall forecasting of NWP models.展开更多
Rock and geotechnical engineering investigations involve drilling holes in ground with or without retrieving soil and rock samples to construct the subsurface ground profile.On the basis of an actual soil nailing dril...Rock and geotechnical engineering investigations involve drilling holes in ground with or without retrieving soil and rock samples to construct the subsurface ground profile.On the basis of an actual soil nailing drilling for a slope stability project in Hong Kong,this paper further develops the drilling process monitoring(DPM)method for digitally profiling the subsurface geomaterials of weathered granitic rocks using a compressed airflow driven percussive-rotary drilling machine with down-the-hole(DTH)hammer.Seven transducers are installed on the drilling machine and record the chuck displacement,DTH rotational speed,and five pressures from five compressed airflows in real-time series.The mechanism and operations of the drilling machine are elaborated in detail,which is essential for understanding and evaluating the drilling data.A MATLAB program is developed to automatically filter the recorded drilling data in time series and classify them into different drilling processes in sub-time series.These processes include penetration,push-in with or without rod,pull-back with or without rod,rod-tightening and rod-untightening.The drilling data are further reconstructed to plot the curve of drill-bit depth versus the net drilling time along each of the six drillholes.Each curve is found to contain multiple linear segments with a constant penetration rate,which implies a zone of homogenous geomaterial with different weathering grades.The effect from fluctuation of the applied pressures is evaluated quantitatively.Detailed analyses are presented for accurately assess and verify the underground profiling and strength in weathered granitic rock,which provided the basis of using DPM method to confidently assess drilling measurements to interpret the subsurface profile in real time.展开更多
Understanding the strength characteristics and deformation behaviour of the tunnel surrounding rock in a fault zone is significant for tunnel stability evaluation.In this study,a series of unconfined compression tests...Understanding the strength characteristics and deformation behaviour of the tunnel surrounding rock in a fault zone is significant for tunnel stability evaluation.In this study,a series of unconfined compression tests were conducted to investigate the mechanical characteristics and failure behaviour of completely weathered granite(CWG)from a fault zone,considering with height-diameter(h/d)ratio,dry densities(ρd)and moisture contents(ω).Based on the experimental results,a regression mathematical model of unconfined compressive strength(UCS)for CWG was developed using the Multiple Nonlinear Regression method(MNLR).The research results indicated that the UCS of the specimen with a h/d ratio of 0.6 decreased with the increase ofω.When the h/d ratio increased to 1.0,the UCS increasedωwith up to 10.5%and then decreased.Increasingρd is conducive to the improvement of the UCS at anyω.The deformation and rupture process as well as final failure modes of the specimen are controlled by h/d ratio,ρd andω,and the h/d ratio is the dominant factor affecting the final failure mode,followed byωandρd.The specimens with different h/d ratio exhibited completely different fracture mode,i.e.,typical splitting failure(h/d=0.6)and shear failure(h/d=1.0).By comparing the experimental results,this regression model for predicting UCS is accurate and reliable,and the h/d ratio is the dominant factor affecting the UCS of CWG,followed byρd and thenω.These findings provide important references for maintenance of the tunnel crossing other fault fractured zones,especially at low confining pressure or unconfined condition.展开更多
Wooden buildings play a very important role in China’s construction and landscape architecture industry.In order to explore the weathering characteristics of the surface layer of landscape wooden buildings,the main c...Wooden buildings play a very important role in China’s construction and landscape architecture industry.In order to explore the weathering characteristics of the surface layer of landscape wooden buildings,the main causes of weathering were analyzed on the basis of summarizing the common types of weathering characterization.The results showed that the weathering characterization was mainly reflected in the surface defects of wood structures,such as cracking,discoloration,peeling,wind erosion wear,and so on.The coating technology on the surface of constructions was the main artificial factor affecting the surface defects of constructions.In the case of similar surface decoration conditions,sunlight and moisture were the main natural factors affecting the weathering of wooden buildings,which will promote the process of weathering.展开更多
Based on the data of the wind speed from 20 m meteorological tower and PM10 mass concentration in Zhurihe region from January of 2005 to April of 2006,the evolution characteristics of wind speed profile in near surfac...Based on the data of the wind speed from 20 m meteorological tower and PM10 mass concentration in Zhurihe region from January of 2005 to April of 2006,the evolution characteristics of wind speed profile in near surface layer and PM10 in three representative dust weather processes (dust storm,blowing sand and floating dust) were analyzed.The results showed that wind speed was higher during dust storm and blowing sand with remarkable vertical gradient.The speed in floating dust was relatively lower and increased during the whole process.In general,wind speed after dust weather was smaller with respect to that before the event.The average mass concentrations of PM10 in the processes of dust storm,blowing sand and floating dust were in the ranges of 5 436.38-10 000,1 799.49-4 006.06 and 1 765.53 μg/m3,respectively.展开更多
In order to better understand the leaching process of rare earth (RE) and aluminum (Al) from the weathered crust elutiondepositedRE ore, the mass transfer of RE and Al in column leaching was investigated using the...In order to better understand the leaching process of rare earth (RE) and aluminum (Al) from the weathered crust elutiondepositedRE ore, the mass transfer of RE and Al in column leaching was investigated using the chromatographic plate theory. Theresults show that a higher initial ammonium concentration in a certain range can enhance the mass transfer process. pH of leachingagent in the range of 2 to 8 almost has no effect on the mass transfer efficiency of RE, but plays a positive role in the mass transferefficiency of Al under strong acidic condition (pH〈4). There is an optimum flow rate that makes the highest mass transfer efficiency.The optimum leaching condition of RE is the leaching agent pH of 4?8, ammonium concentration of 0.4 mol/L and flow rate of0.5 mL/min. The mass transfer efficiencies of RE and Al both follow the order: (NH4)2SO4〈NH4Cl〈NH4NO3, implying thecomplexing ability of anion.展开更多
基金jointly supported by the National Natural Science Foundation of China (42275038)China Meteorological Administration Climate Change Special Program (QBZ202306)Robin CLARK was funded by the Met Office Climate Science for Service Partnership (CSSP) China project under the International Science Partnerships Fund (ISPF)
文摘Globally,2023 was the warmest observed year on record since at least 1850 and,according to proxy evidence,possibly of the past 100000 years.As in recent years,the record warmth has again been accompanied with yet more extreme weather and climate events throughout the world.Here,we provide an overview of those of 2023,with details and key background causes to help build upon our understanding of the roles of internal climate variability and anthropogenic climate change.We also highlight emerging features associated with some of these extreme events.Hot extremes are occurring earlier in the year,and increasingly simultaneously in differing parts of the world(e.g.,the concurrent hot extremes in the Northern Hemisphere in July 2023).Intense cyclones are exacerbating precipitation extremes(e.g.,the North China flooding in July and the Libya flooding in September).Droughts in some regions(e.g.,California and the Horn of Africa)have transitioned into flood conditions.Climate extremes also show increasing interactions with ecosystems via wildfires(e.g.,those in Hawaii in August and in Canada from spring to autumn 2023)and sandstorms(e.g.,those in Mongolia in April 2023).Finally,we also consider the challenges to research that these emerging characteristics present for the strategy and practice of adaptation.
基金The financial supports of the National Natural Science Foundation of China(Grant No.42177148)the opening fund of State Key Laboratory of Geohazard Prevention and Geo-environment Protection(Grant No.SKLGP 2023K011)Postdoctoral Research Project of Guangzhou(Grant No.20220402)are gratefully thanked.
文摘The micaceous weathered granitic soil(WGS)is frequently encountered in civil engineering worldwide,unfortunately little information is available regarding how mica affects the physico-mechanical behaviors of WGS.This study prepares reconstituted WGS with different mica contents by removing natural mica in theWGS,and then mixes it with commercial mica powders.The geotechnical behavior as well as the microstructures of the mixtures are characterized.The addition of mica enables the physical indices of WGS to be specific combinations of coarser gradation and high permeability but high Atterberg limits.However,high mica content in WGS was found to be associated with undesirable mechanical properties,including increased compressibility,disintegration,and swelling potential,as well as poor compactability and low effective frictional angle.Microstructural analysis indicates that the influence of mica on the responses of mixtures originates from the intrinsic nature of mica as well as the particle packing being formed withinWGS.Mica exists in the mixture as stacks of plates that form a spongy structure with high compressibility and swelling potential.Pores among the plates give the soil high water retention and high Atterberg limits.Large pores are also generated by soil particles with bridging packing,which enhances the permeability and water-soil interactions upon immersion.This study provides a microlevel understanding of how mica dominates the behavior of WGS and provides new insights into the effective stabilization and improvement of micaceous soils.
基金supported by the National Natural Science Foundation of China (Project No.42375192)the China Meteorological Administration Climate Change Special Program (CMA-CCSP+1 种基金Project No.QBZ202315)support by the Vector Stiftung through the Young Investigator Group"Artificial Intelligence for Probabilistic Weather Forecasting."
文摘Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks.
文摘Artificial intelligence(AI)has already demonstrated its proficiency at difficult scientific tasks like predicting how proteins will fold and identifying new astronomical objects in masses of observational data[1].Now,recent results suggest that AI also excels at weather forecasting.For global predictions,GraphCast,an AI system developed by Google subsidiary DeepMind(London,UK),outperforms the state-of-the-art model from the European Centre for Medium-Range Weather Forecasts(ECMWF),providing more accurate projections of variables such as temperature and humidity 90%of the time[2,3].Other AI systems,including Pangu-Weather from the Chinese tech company Huawei(Shenzhen,China)[4],can also match or beat traditional global forecasting models.
文摘We are evaluating dryland cotton production in Martin County, Texas, measuring cotton lint yield per unit of rainfall. Our goal is to collect rainfall data per 250 - 400 ha. Upon selection of a rainfall gauge, we realized that the cost of using, for example, a tipping bucket-type rain gauge would be too expensive and thus searched for an alternative method. We selected an all-in-one commercially available weather station;hereafter, referred to as a Personal Weather Station (PWS) that is both wireless and solar powered. Our objective was to evaluate average measurements of rainfall obtained with the PWS and to compare these to measurements obtained with an automatic weather station (AWS). For this purpose, we installed four PWS deployed within 20 m of the Plant Stress and Water Conservation Meteorological Tower that was used as our AWS, located at USDA-ARS Cropping Systems Research Laboratory, Lubbock, TX. In addition, we measured and compared hourly average values of short-wave irradiance (R<sub>g</sub>), air temperature (T<sub>air</sub>) and relative humidity (RH), and wind speed (WS), and calculated values of dewpoint temperature (T<sub>dew</sub>). This comparison was done over a 242-day period (1 October 2022-31 May 2023) and results indicated that there was no statistical difference in measurements of rainfall between the PWS and AWS. Hourly average values of R<sub>g</sub> measured with the PWS and AWS agreed on clear days, but PWS measurements were higher on cloudy days. There was no statistical difference between PWS and AWS hourly average measurements of T<sub>air</sub>, RH, and calculated T<sub>dew</sub>. Hourly average measurements of R<sub>g</sub> and WS were more variable. We concluded that the PWS we selected will provide adequate values of rainfall and other weather variables to meet our goal of evaluating dryland cotton lint yield per unit rainfall.
基金funded by the Open Fund of National Key Laboratory of Renewable Energy Grid Integration(China Electric Power Research Institute)(No.NYB51202301624).
文摘The output of photovoltaic power stations is significantly affected by environmental factors,leading to intermittent and fluctuating power generation.With the increasing frequency of extreme weather events due to global warming,photovoltaic power stations may experience drastic reductions in power generation or even complete shutdowns during such conditions.The integration of these stations on a large scale into the power grid could potentially pose challenges to systemstability.To address this issue,in this study,we propose a network architecture based on VMDKELMfor predicting the power output of photovoltaic power plants during severe weather events.Initially,a grey relational analysis is conducted to identify key environmental factors influencing photovoltaic power generation.Subsequently,GMM clustering is utilized to classify meteorological data points based on their probabilities within different Gaussian distributions,enabling comprehensive meteorological clustering and extraction of significant extreme weather data.The data are decomposed using VMD to Fourier transform,followed by smoothing processing and signal reconstruction using KELM to forecast photovoltaic power output under major extreme weather conditions.The proposed prediction scheme is validated by establishing three prediction models,and the predicted photovoltaic output under four major extreme weather conditions is analyzed to assess the impact of severe weather on photovoltaic power station output.The experimental results show that the photovoltaic power output under conditions of dust storms,thunderstorms,solid hail precipitation,and snowstorms is reduced by 68.84%,42.70%,61.86%,and 49.92%,respectively,compared to that under clear day conditions.The photovoltaic power prediction accuracies,in descending order,are dust storms,solid hail precipitation,thunderstorms,and snowstorms.
基金Supported by the Key Research Program of the Chinese Academy of Sciences(ZDRE-KT-2021-3)。
文摘Both analyzing a large amount of space weather observed data and alleviating personal experience bias are significant challenges in generating artificial space weather forecast products.With the use of natural language generation methods based on the sequence-to-sequence model,space weather forecast texts can be automatically generated.To conduct our generation tasks at a fine-grained level,a taxonomy of space weather phenomena based on descriptions is presented.Then,our MDH(Multi-Domain Hybrid)model is proposed for generating space weather summaries in two stages.This model is composed of three sequence-to-sequence-based deep neural network sub-models(one Bidirectional Auto-Regressive Transformers pre-trained model and two Transformer models).Then,to evaluate how well MDH performs,quality evaluation metrics based on two prevalent automatic metrics and our innovative human metric are presented.The comprehensive scores of the three summaries generating tasks on testing datasets are 70.87,93.50,and 92.69,respectively.The results suggest that MDH can generate space weather summaries with high accuracy and coherence,as well as suitable length,which can assist forecasters in generating high-quality space weather forecast products,despite the data being starved.
基金National Key Research and Development Project(Grant No.2019YFE0123300)National Natural Science Foundation of China(Grant Nos.42072337,42241111,and 42241129)+1 种基金Pandeng Program of National Space Science Center,Chinese Academy of Sciences.Xing Wu also acknowledges support from the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(Grant No.2022QNRC001)China Postdoctoral Science Foundation(Grant No.2021M700149).
文摘With the development of the hyperspectral remote sensing technique,extensive chemical weathering profiles have been identified on Mars.These weathering sequences,formed through precipitation-driven leaching processes,can reflect the paleoenvironments and paleoclimates during pedogenic processes.The specific composition and stratigraphic profiles mirror the mineralogical and chemical trends observed in weathered basalts on Hainan Island in south China.In this study,we investigated the laboratory reflectance spectra of a 53-m-long drilling core of a thick basaltic weathering profile collected from Hainan Island.We established a quantitative spectral model by combining the genetic algorithm and partial least squares regression(GA-PLSR)to predict the chemical properties(SiO2,Al2O3,Fe2O3)and index of laterization(IOL).The entire sample set was divided into a calibration set of 25 samples and a validation set of 12 samples.Specifically,the GA was used to select the spectral subsets for each composition,which were then input into the PLSR model to derive the chemical concentration.The coefficient of determination(R2)values on the validation set for SiO2,Al2O3,Fe2O3,and the IOL were greater than 0.9.In addition,the effects of various spectral preprocessing techniques on the model accuracy were evaluated.We found that the spectral derivative treatment boosted the prediction accuracy of the GA-PLSR model.The improvement achieved with the second derivative was more pronounced than when using the first derivative.The quantitative model developed in this work has the potential to estimate the contents of similar weathering basalt products,and thus infer the degree of alteration and provide insights into paleoclimatic conditions.Moreover,the informative bands selected by the GA can serve as a guideline for designing spectral channels for the next generation of spectrometers.
基金funded by the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia,grant number S-1443-0223.
文摘The demand for broadband data services on high-speed trains is rapidly growing as more people commute between their homes and workplaces.However,current radio frequency(RF)technology cannot adequately meet this demand.In order to address the bandwidth constraint,a technique known as free space optics(FSO)has been proposed.This paper presents a mathematical derivation and formulation of curve track G2T-FSO(Ground-to-train Free Space Optical)model,where the track radius characteristics is 2667 m,divergence angle track is 1.5°for train velocity at V=250 km/h.Multiple transmitter configurations are proposed to maximize coverage range and enhance curve track G2T-FSO link performance under varying weather conditions.The curved track G2T-FSO model was evaluated in terms of received power,signal-to-noise ratio(SNR),bit error rate(BER),and eye diagrams.The results showed maximum coverage lengths of 618,505,365,and 240 m for 4Tx/1Rx,3Tx/1Rx,2Tx/1Rx,and 1Tx/1Rx configurations,respectively.The analyzed results demonstrate that the G2T-FSO link can be effectively implemented under various weather conditions.
基金Project(42202318)supported by the National Natural Science Foundation of China。
文摘his study focused on exploring the specificity of mechanical behavior for completely weathered granite,as a special soil,by consolidated drained triaxial tests.The influences of dry density(1.60,1.70,1.80 and 1.90 g/cm^(3)),confining pressure(100,200,400 and 600 kPa),and moisture content(13.0%,that is,natural moisture content)were investigated in the present work.A newly developed Duncan-Chang model was established based on the experimental data and Duncan-Chang model.The influence of each parameter on the type of the proposed model curve was also evaluated.The experimental results revealed that with varying dry density and confining pressure,the deviatoric stress–strain curves have diversified characteristics including strain-softening,strain-stabilization and strain-hardening.Under high confining pressure condition,specimens with different densities all showed strain-hardening characteristic.Whereas at the low confining pressure levels,specimens with higher densities gradually transform into softening characteristics.Except for individual compression shear failure,the deformation modes of the specimens all showed swelling deformation,and all the damaged specimens maintained good integrity.Through comparing the experiment results,the strain-softening or strain-hardening behavior of CWG specimens could be predicted following the proposed model with high accuracy.Additionally,the proposed model can accurately characterize the key mechanical indicators,such as tangent modulus,peak value and residual strength,which is simple to implement and depends on fewer parameters.
基金supported by the Dean Faculty of Science,University of Karachi research grant.
文摘This study is thefirst attempt to assess the nature of the soil,especially on the western side of the Porali Plain in Balochistan;a new emerging agriculture hub,using weathering and pollution indices supplemented by multi-variate analysis based on geochemical data.The outcomes of this study are expected to help farmers in soil manage-ment and selecting suitable crops for the region.Twenty-five soil samples were collected,mainly from the arable land of the Porali Plain.After drying and coning-quarter-ing,soil samples were analyzed for major and trace ele-ments using the XRF technique;sieving and hydrometric methods were employed for granulometric analysis.Esti-mated data were analyzed using Excel,SPSS,and Surfer software to calculate various indices,correlation matrix,and spatial distribution.The granulometric analysis showed that 76%of the samples belonged to loam types of soil,12%to sand type,and 8%to silt type.Weathering indices:CIA,CIW,PIA,PWI,WIP,CIX,and ICV were calculated to infer the level of alteration.These indices reflect mod-erate to intense weathering;supported by K_(2)O/AI_(2)O_(3),Rb/K_(2)O,Rb/Ti,and Rb/Sr ratios.Assessment of the geo-ac-cumulation and Nemerow Pollution indices pinpoint rela-tively high concentrations of Pb,Ni,and Cr concentration in the soils.The correlation matrix and Principal Compo-nent Analysis show that the soil in this study area is mainly derived from the weathering of igneous rocks of Bela Ophiolite(Cretaceous age)and Jurassic sedimentary rocks of Mor Range having SEDEX/MVT type mineralization.Weathering may result in the undesirable accumulation of certain trace elements which adversely affects crops.
文摘The marine accidents are among the main components of the Zanzibar Disaster Management Policy (2011) and the Zanzibar Blue Economy Policy (2020). These policies aimed to institute legal frame works and procedures for reducing both the frequency of marine accidents and their associated fatalities. These fatalities include deaths, permanent disabilities and loss of properties which may result into increased poverty levels as per the sustainable development goal one (SDG1) which stipulates on ending the poverty in all its forms everywhere. Thus, in the way to support these Government efforts, the influence of climate and weather on marine accidents along Zanzibar and Pemba Channels was investigated. The study used the 10 years (2013-2022) records of daily rainfall and hourly wind speed acquired from Tanzania Meteorological Authority (TMA) (for the observation stations of Zanzibar, Pemba, Dares Salaam and Tanga), and the significant wave heights data, which was freely downloaded from Globally Forecasting System (GFS-World model of 13 km resolution). The marine accident records were collected from TASAC and Zanzibar Maritime Authority (ZMA), and the anecdotal information was collected from heads of quay and boat captains in different areas of Zanzibar. The Mann Kendal test, was used to determine the slopes and trends direction of used weather parameters, while the Pearson correlations analysis and t-tests were used to understand the significance of the underlying relationship between the weather and marine accidents. The paired t-test was used to evaluate the extent to which weather parameters affect the marine accidents. Results revealed that the variability of extreme weather events (rainfall, ocean waves and wind speed) was seen to be among the key factors for most of the recorded marine accidents. For instance, in Pemba high rainfall showed an increasing trend of extreme rainfall events, while Zanzibar has shown a decreasing trend of these events. As for extreme wind events, results show that Dar es Salaam and Tanga had an increasing trend, while Zanzibar and Pemba had shown a decreasing trend. As for the monthly variability of frequencies of extreme rainfall events, March to May (MAM) season was shown to have the highest frequencies over all stations with the peaks at Zanzibar and Pemba. On the other hand, high frequency of extreme wind speed was observed from May to September with peaks in June to July, and the highest strength was observed during 09:00 to 15:00 GMT. Moreover, results revealed an increasing trend of marine accidents caused by bad weather except during November. Also, results showed that bad weather conditions contributed to 48 (32%) of all 150 recorded accidents. Further results revealed significant correlation between the extreme wind and marine accidents, with the highest strong correlation of r = 0.71 (at p ≤ 0.007) and r = 0.75 (at p ≤ 0.009) at Tanga and Pemba, indicating the occurrence of more marine accidents at the Pemba channel. Indeed, strong correlation of r = 0.6 between extreme rainfall events and marine accidents was shown in Pemba, while the correlations between extremely significant wave heights and marine accidents were r = 0.41 (at p ≤ 0.006) and r = 0.34 (p ≤ 0.0006) for Pemba and Zanzibar Channel, respectively. In conclusion, the study has shown high influence between marine accidents and bad weather events with more impacts in Pemba and Zanzibar. Thus, the study calls for more work to be undertaken to raise the awareness on marine accidents as a way to alleviate the poverty and enhance the sustainable blue economy.
基金CNSA for providing access to the lunar sample CE5C0200YJFM00302funding support from the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB 41000000)+5 种基金the National Natural Science Foundation of China (Nos. 42273042 and 41931077)the Youth Innovation Promotion Association Chinese Academy of Sciences (No. 2020395)Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Nos. ZDBS-SSW-JSC00710 and QYZDY-SSW-DQC028)the Young and Middleaged Academic Technology Leader Reserve Talent Project of Yunnan Province (No. 2018HB009)the Science Fund for Outstanding Youth of Yunnan Province (No. 202101 AV070007)the "From 0 to 1" Original Exploration Cultivation Project, Institute of Geochemistry, Chinese Academy of Sciences (No. DHSZZ2023-3)
文摘Space metallurgy is an interdisciplinary field that combines planetary space science and metallurgical engineering.It involves systematic and theoretical engineering technology for utilizing planetary resources in situ.However,space metallurgy on the Moon is challenging because the lunar surface has experienced space weathering due to the lack of atmosphere and magnetic field,making the mi-crostructure of lunar soil differ from that of minerals on the Earth.In this study,scanning electron microscopy and transmission electron microscopy analyses were performed on Chang’e-5 powder lunar soil samples.The microstructural characteristics of the lunar soil may drastically change its metallurgical performance.The main special structure of lunar soil minerals include the nanophase iron formed by the impact of micrometeorites,the amorphous layer caused by solar wind injection,and radiation tracks modified by high-energy particle rays inside mineral crystals.The nanophase iron presents a wide distribution,which may have a great impact on the electromagnetic prop-erties of lunar soil.Hydrogen ions injected by solar wind may promote the hydrogen reduction process.The widely distributed amorph-ous layer and impact glass can promote the melting and diffusion process of lunar soil.Therefore,although high-energy events on the lun-ar surface transform the lunar soil,they also increase the chemical activity of the lunar soil.This is a property that earth samples and tradi-tional simulated lunar soil lack.The application of space metallurgy requires comprehensive consideration of the unique physical and chemical properties of lunar soil.
文摘Achieving reliable and efficient weather classification for autonomous vehicles is crucial for ensuring safety and operational effectiveness.However,accurately classifying diverse and complex weather conditions remains a significant challenge.While advanced techniques such as Vision Transformers have been developed,they face key limitations,including high computational costs and limited generalization across varying weather conditions.These challenges present a critical research gap,particularly in applications where scalable and efficient solutions are needed to handle weather phenomena’intricate and dynamic nature in real-time.To address this gap,we propose a Multi-level Knowledge Distillation(MLKD)framework,which leverages the complementary strengths of state-of-the-art pre-trained models to enhance classification performance while minimizing computational overhead.Specifically,we employ ResNet50V2 and EfficientNetV2B3 as teacher models,known for their ability to capture complex image features and distil their knowledge into a custom lightweight Convolutional Neural Network(CNN)student model.This framework balances the trade-off between high classification accuracy and efficient resource consumption,ensuring real-time applicability in autonomous systems.Our Response-based Multi-level Knowledge Distillation(R-MLKD)approach effectively transfers rich,high-level feature representations from the teacher models to the student model,allowing the student to perform robustly with significantly fewer parameters and lower computational demands.The proposed method was evaluated on three public datasets(DAWN,BDD100K,and CITS traffic alerts),each containing seven weather classes with 2000 samples per class.The results demonstrate the effectiveness of MLKD,achieving a 97.3%accuracy,which surpasses conventional deep learning models.This work improves classification accuracy and tackles the practical challenges of model complexity,resource consumption,and real-time deployment,offering a scalable solution for weather classification in autonomous driving systems.
基金jointly supported by the National Natural Science Foundation of China(Grant No.U1811464)the Hydraulic Innovation Project of Science and Technology of Guangdong Province of China(Grant No.2022-01)the Guangzhou Basic and Applied Basic Research Foundation(Grant No.202201011472)。
文摘Due to various technical issues,existing numerical weather prediction(NWP)models often perform poorly at forecasting rainfall in the first several hours.To correct the bias of an NWP model and improve the accuracy of short-range precipitation forecasting,we propose a deep learning-based approach called UNet Mask,which combines NWP forecasts with the output of a convolutional neural network called UNet.The UNet Mask involves training the UNet on historical data from the NWP model and gridded rainfall observations for 6-hour precipitation forecasting.The overlap of the UNet output and the NWP forecasts at the same rainfall threshold yields a mask.The UNet Mask blends the UNet output and the NWP forecasts by taking the maximum between them and passing through the mask,which provides the corrected 6-hour rainfall forecasts.We evaluated UNet Mask on a test set and in real-time verification.The results showed that UNet Mask outperforms the NWP model in 6-hour precipitation prediction by reducing the FAR and improving CSI scores.Sensitivity tests also showed that different small rainfall thresholds applied to the UNet and the NWP model have different effects on UNet Mask's forecast performance.This study shows that UNet Mask is a promising approach for improving rainfall forecasting of NWP models.
基金supported by grants from the Research Grant Council of the Hong Kong Special Administrative Region,China(Project Nos.HKU 7137/03E and R7005/01E)。
文摘Rock and geotechnical engineering investigations involve drilling holes in ground with or without retrieving soil and rock samples to construct the subsurface ground profile.On the basis of an actual soil nailing drilling for a slope stability project in Hong Kong,this paper further develops the drilling process monitoring(DPM)method for digitally profiling the subsurface geomaterials of weathered granitic rocks using a compressed airflow driven percussive-rotary drilling machine with down-the-hole(DTH)hammer.Seven transducers are installed on the drilling machine and record the chuck displacement,DTH rotational speed,and five pressures from five compressed airflows in real-time series.The mechanism and operations of the drilling machine are elaborated in detail,which is essential for understanding and evaluating the drilling data.A MATLAB program is developed to automatically filter the recorded drilling data in time series and classify them into different drilling processes in sub-time series.These processes include penetration,push-in with or without rod,pull-back with or without rod,rod-tightening and rod-untightening.The drilling data are further reconstructed to plot the curve of drill-bit depth versus the net drilling time along each of the six drillholes.Each curve is found to contain multiple linear segments with a constant penetration rate,which implies a zone of homogenous geomaterial with different weathering grades.The effect from fluctuation of the applied pressures is evaluated quantitatively.Detailed analyses are presented for accurately assess and verify the underground profiling and strength in weathered granitic rock,which provided the basis of using DPM method to confidently assess drilling measurements to interpret the subsurface profile in real time.
基金supported by the National Natural Science Foundation of China,NSFC(No.42202318).
文摘Understanding the strength characteristics and deformation behaviour of the tunnel surrounding rock in a fault zone is significant for tunnel stability evaluation.In this study,a series of unconfined compression tests were conducted to investigate the mechanical characteristics and failure behaviour of completely weathered granite(CWG)from a fault zone,considering with height-diameter(h/d)ratio,dry densities(ρd)and moisture contents(ω).Based on the experimental results,a regression mathematical model of unconfined compressive strength(UCS)for CWG was developed using the Multiple Nonlinear Regression method(MNLR).The research results indicated that the UCS of the specimen with a h/d ratio of 0.6 decreased with the increase ofω.When the h/d ratio increased to 1.0,the UCS increasedωwith up to 10.5%and then decreased.Increasingρd is conducive to the improvement of the UCS at anyω.The deformation and rupture process as well as final failure modes of the specimen are controlled by h/d ratio,ρd andω,and the h/d ratio is the dominant factor affecting the final failure mode,followed byωandρd.The specimens with different h/d ratio exhibited completely different fracture mode,i.e.,typical splitting failure(h/d=0.6)and shear failure(h/d=1.0).By comparing the experimental results,this regression model for predicting UCS is accurate and reliable,and the h/d ratio is the dominant factor affecting the UCS of CWG,followed byρd and thenω.These findings provide important references for maintenance of the tunnel crossing other fault fractured zones,especially at low confining pressure or unconfined condition.
基金Science and technology research projects of colleges and universities in Inner Mongolia(NJZY22511)Funds for basic scientific research in universities of Inner Mongolia:Key project of Philosophy and Social Science Foundation of Inner Mongolia Agricultural University(BR220603)。
文摘Wooden buildings play a very important role in China’s construction and landscape architecture industry.In order to explore the weathering characteristics of the surface layer of landscape wooden buildings,the main causes of weathering were analyzed on the basis of summarizing the common types of weathering characterization.The results showed that the weathering characterization was mainly reflected in the surface defects of wood structures,such as cracking,discoloration,peeling,wind erosion wear,and so on.The coating technology on the surface of constructions was the main artificial factor affecting the surface defects of constructions.In the case of similar surface decoration conditions,sunlight and moisture were the main natural factors affecting the weathering of wooden buildings,which will promote the process of weathering.
基金Supported by the Scientific Project of Jiangsu Environmental Protection(2009008)The Preliminary Research Projects of Jiangsu "Shier Wu" Environmental Protection Planning
文摘Based on the data of the wind speed from 20 m meteorological tower and PM10 mass concentration in Zhurihe region from January of 2005 to April of 2006,the evolution characteristics of wind speed profile in near surface layer and PM10 in three representative dust weather processes (dust storm,blowing sand and floating dust) were analyzed.The results showed that wind speed was higher during dust storm and blowing sand with remarkable vertical gradient.The speed in floating dust was relatively lower and increased during the whole process.In general,wind speed after dust weather was smaller with respect to that before the event.The average mass concentrations of PM10 in the processes of dust storm,blowing sand and floating dust were in the ranges of 5 436.38-10 000,1 799.49-4 006.06 and 1 765.53 μg/m3,respectively.
基金Projects(51274152,41472071)supported by the National Natural Science Foundation of ChinaProject(T201506)supported by the Program for Excellent Young Scientific and Technological Innovation Team of Hubei Provincial Department of Education,China
文摘In order to better understand the leaching process of rare earth (RE) and aluminum (Al) from the weathered crust elutiondepositedRE ore, the mass transfer of RE and Al in column leaching was investigated using the chromatographic plate theory. Theresults show that a higher initial ammonium concentration in a certain range can enhance the mass transfer process. pH of leachingagent in the range of 2 to 8 almost has no effect on the mass transfer efficiency of RE, but plays a positive role in the mass transferefficiency of Al under strong acidic condition (pH〈4). There is an optimum flow rate that makes the highest mass transfer efficiency.The optimum leaching condition of RE is the leaching agent pH of 4?8, ammonium concentration of 0.4 mol/L and flow rate of0.5 mL/min. The mass transfer efficiencies of RE and Al both follow the order: (NH4)2SO4〈NH4Cl〈NH4NO3, implying thecomplexing ability of anion.