The seismic reflection and transmission characteristics of a single layer sandwiched between two dissimilar poroelastic solids saturated with two immiscible viscous fluids are investigated. The sandwiched layer is mod...The seismic reflection and transmission characteristics of a single layer sandwiched between two dissimilar poroelastic solids saturated with two immiscible viscous fluids are investigated. The sandwiched layer is modeled as a porous solid with finite thickness. The propagation of waves is represented with potential functions. The displacements of particles in different phases of the aggregate are defined in terms of these potential functions. Due to the presence of viscosity in pore fluids, the reflected and transmitted waves are inhomogeneous in nature, i.e., with different directions of propagation and attenuation. The closed-form analytical expressions for reflection and transmission coefficients are derived theoretically for appropriate boundary conditions. These expressions are calculated as a non-singular system of linear algebraic equations and depend on the various parameters involved in this non-singular system. Hence,numerical examples are studied to determine the effects of various properties of the sandwich layer on reflection and transmission coefficients. The essential features of layer thickness, incident direction, wave frequency, liquidsaturation and capillary pressure of the porous layer on reflection and transmission coefficients are depicted graphically and discussed. The analysis shows that reflection and transmission coefficients are strongly associated with incident direction and various properties of the porous layer.展开更多
The bending and free vibration of a rotating sandwich cylindrical shell are analyzed with the consideration of the nanocomposite core and piezoelectric layers subjected to thermal and magnetic fields by use of the fir...The bending and free vibration of a rotating sandwich cylindrical shell are analyzed with the consideration of the nanocomposite core and piezoelectric layers subjected to thermal and magnetic fields by use of the first-order shear deformation theory (FSDT) of shells. The governing equations of motion and the corresponding boundary conditions are established through the variational method and the Maxwell equation. The closed-form solutions of the rotating sandwich cylindrical shell are obtained. The effects of geometrical parameters, volume fractions of carbon nanotubes, applied voltages on the inner and outer piezoelectric layers, and magnetic and thermal fields on the natural frequency, critical angular velocity, and deflection of the sandwich cylindrical shell are investigated. The critical angular velocity of the nanocomposite sandwich cylindrical shell is obtained. The results show that the mechanical properties, e.g., Young's modulus and thermal expansion coefficient, for the carbon nanotube and matrix are functions of temperature, and the magnitude of the critical angular velocity can be adjusted by changing the applied voltage.展开更多
The magnetic and structural properties in Co/Cu/Co sandwiches with Ni and Cr buffer layers were investigated. It was found that the coercivity in Ni layer buffered samples decreases with increasing Ni layer thickness,...The magnetic and structural properties in Co/Cu/Co sandwiches with Ni and Cr buffer layers were investigated. It was found that the coercivity in Ni layer buffered samples decreases with increasing Ni layer thickness, while that in Cr layer buffered ones increases with increasing Cr layer thickness, leading to a large difference in field sensitivity of their giant magnetoresistance (GMR) properties. X-ray diffraction and high resolution transmission electron microscope images exhibited that there is a strong fcc (111) texture in the samples with Ni buffer layer. But there are only randomly oriented potycrystalline grains in Cr buffered sandwiches. According to atomic force microscope topography, the surface roughness of Cr buffered sandwiches is smaller than that of Ni buffered ones. It is demonstrated that buffer layer influences both magnetic and structural properties in Co/Cu/Co sandwiches as well as their GMR characteristics.展开更多
Free vibration characteristics of circular cylindrical shell with passive constrained layer damping (PCLD)are presented. Wave propagation approach rather than finite element method, transfer matrix method, and Rayle...Free vibration characteristics of circular cylindrical shell with passive constrained layer damping (PCLD)are presented. Wave propagation approach rather than finite element method, transfer matrix method, and Rayleigh-Ritz method is used to solve the problem of vibration of PCLD circular cylindrical shell under a simply supported boundary condition at two ends. The governing equations of motion for the orthotropic cylindrical shell with PCLD are derived on the base of Sanders' thin shell theory. Nu- merical results show that the present method is more effective in comparison with other methods. The effects of the thickness of viscoelastic core and constrained layer, the elastic modulus ratio of orthotropic constrained layer, the complex shear modulus of viscoelastic core on frequency parameter, and the loss factor are discussed.展开更多
A novel surface modification method was proposed to improve the tribological property of Si. Multilayers were grown on Si(100) substrate by self-assembling monolayer (SAMs) method and filtered catholic vacuum arc ...A novel surface modification method was proposed to improve the tribological property of Si. Multilayers were grown on Si(100) substrate by self-assembling monolayer (SAMs) method and filtered catholic vacuum arc (FCVA) technique. The film composition and structure were characterized by using x-ray photoelectron spectroscope (XPS) and Raman spectroscopy (Raman). Surface morphology and the roughness were also analyzed by an atomic force microscope (AFM) and a scanning electron microscopy (SEM). The frictional behaviors of the films were evaluated by a UMT tester. Results showed that elastomeric nanocomposite monolayer prepared by SAM was uniformly distributed and isotropy, and the diamond-like carbon (DLC) film was successfully deposited by the FCVA technique. The friction coefficients of the prepared samples were in the range of 0.108-0.188. Furthermore, the friction coefficient slightly increased but the surface quality of the wear trace was improved after adding the copolymer elastomeric macromolecules SEBS on aminopropyl-triethoxysilane (APS) layer due to the inherent long chain of SEBS which abated the immediate impulsion at the interface and changed the kinetic energy into elastic potential energy, and stored it in SEBS.展开更多
文摘The seismic reflection and transmission characteristics of a single layer sandwiched between two dissimilar poroelastic solids saturated with two immiscible viscous fluids are investigated. The sandwiched layer is modeled as a porous solid with finite thickness. The propagation of waves is represented with potential functions. The displacements of particles in different phases of the aggregate are defined in terms of these potential functions. Due to the presence of viscosity in pore fluids, the reflected and transmitted waves are inhomogeneous in nature, i.e., with different directions of propagation and attenuation. The closed-form analytical expressions for reflection and transmission coefficients are derived theoretically for appropriate boundary conditions. These expressions are calculated as a non-singular system of linear algebraic equations and depend on the various parameters involved in this non-singular system. Hence,numerical examples are studied to determine the effects of various properties of the sandwich layer on reflection and transmission coefficients. The essential features of layer thickness, incident direction, wave frequency, liquidsaturation and capillary pressure of the porous layer on reflection and transmission coefficients are depicted graphically and discussed. The analysis shows that reflection and transmission coefficients are strongly associated with incident direction and various properties of the porous layer.
基金supported by the Iranian Nanotechnology Development Committee(No.574602/14)
文摘The bending and free vibration of a rotating sandwich cylindrical shell are analyzed with the consideration of the nanocomposite core and piezoelectric layers subjected to thermal and magnetic fields by use of the first-order shear deformation theory (FSDT) of shells. The governing equations of motion and the corresponding boundary conditions are established through the variational method and the Maxwell equation. The closed-form solutions of the rotating sandwich cylindrical shell are obtained. The effects of geometrical parameters, volume fractions of carbon nanotubes, applied voltages on the inner and outer piezoelectric layers, and magnetic and thermal fields on the natural frequency, critical angular velocity, and deflection of the sandwich cylindrical shell are investigated. The critical angular velocity of the nanocomposite sandwich cylindrical shell is obtained. The results show that the mechanical properties, e.g., Young's modulus and thermal expansion coefficient, for the carbon nanotube and matrix are functions of temperature, and the magnitude of the critical angular velocity can be adjusted by changing the applied voltage.
文摘The magnetic and structural properties in Co/Cu/Co sandwiches with Ni and Cr buffer layers were investigated. It was found that the coercivity in Ni layer buffered samples decreases with increasing Ni layer thickness, while that in Cr layer buffered ones increases with increasing Cr layer thickness, leading to a large difference in field sensitivity of their giant magnetoresistance (GMR) properties. X-ray diffraction and high resolution transmission electron microscope images exhibited that there is a strong fcc (111) texture in the samples with Ni buffer layer. But there are only randomly oriented potycrystalline grains in Cr buffered sandwiches. According to atomic force microscope topography, the surface roughness of Cr buffered sandwiches is smaller than that of Ni buffered ones. It is demonstrated that buffer layer influences both magnetic and structural properties in Co/Cu/Co sandwiches as well as their GMR characteristics.
文摘Free vibration characteristics of circular cylindrical shell with passive constrained layer damping (PCLD)are presented. Wave propagation approach rather than finite element method, transfer matrix method, and Rayleigh-Ritz method is used to solve the problem of vibration of PCLD circular cylindrical shell under a simply supported boundary condition at two ends. The governing equations of motion for the orthotropic cylindrical shell with PCLD are derived on the base of Sanders' thin shell theory. Nu- merical results show that the present method is more effective in comparison with other methods. The effects of the thickness of viscoelastic core and constrained layer, the elastic modulus ratio of orthotropic constrained layer, the complex shear modulus of viscoelastic core on frequency parameter, and the loss factor are discussed.
基金Funded by the National Natural Science Foundation of China (Nos.50775101 and 51005103)Key Technology R&D Program of Jiangsu Province (No.BE2009123)+1 种基金Educational Commission of Jiangsu Province (No.09KJB460001)Doctoral Innovation Foundation of Jiangsu University (No.CX07B-03X)
文摘A novel surface modification method was proposed to improve the tribological property of Si. Multilayers were grown on Si(100) substrate by self-assembling monolayer (SAMs) method and filtered catholic vacuum arc (FCVA) technique. The film composition and structure were characterized by using x-ray photoelectron spectroscope (XPS) and Raman spectroscopy (Raman). Surface morphology and the roughness were also analyzed by an atomic force microscope (AFM) and a scanning electron microscopy (SEM). The frictional behaviors of the films were evaluated by a UMT tester. Results showed that elastomeric nanocomposite monolayer prepared by SAM was uniformly distributed and isotropy, and the diamond-like carbon (DLC) film was successfully deposited by the FCVA technique. The friction coefficients of the prepared samples were in the range of 0.108-0.188. Furthermore, the friction coefficient slightly increased but the surface quality of the wear trace was improved after adding the copolymer elastomeric macromolecules SEBS on aminopropyl-triethoxysilane (APS) layer due to the inherent long chain of SEBS which abated the immediate impulsion at the interface and changed the kinetic energy into elastic potential energy, and stored it in SEBS.