期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
In-situ Micro-CT analysis of deformation behavior in sandwich-structured meta-stable beta Ti−35Nb alloy
1
作者 Yu-jing LIU Zi-lin ZHANG +4 位作者 Jin-cheng WANG Xiang WU Xiao-chun LIU Wei-ying HUANG Lai-chang ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2552-2562,共11页
Beta Ti−35Nb sandwich-structured composites with various reinforcing layers were designed and produced using additive manufacturing(AM)to achieve a balance between light weight and high strength.The impact of reinforc... Beta Ti−35Nb sandwich-structured composites with various reinforcing layers were designed and produced using additive manufacturing(AM)to achieve a balance between light weight and high strength.The impact of reinforcing layers on the compressive deformation behavior of porous composites was investigated through micro-computed tomography(Micro-CT)and finite element method(FEM)analyses.The results indicate that the addition of reinforcement layers to sandwich structures can significantly enhance the compressive yield strength and energy absorption capacity of porous metal structures;Micro-CT in-situ observation shows that the strain of the porous structure without the reinforcing layer is concentrated in the middle region,while the strain of the porous structure with the reinforcing layer is uniformly distributed;FEM analysis reveals that the reinforcing layers can alter stress distribution and reduce stress concentration,thereby promoting uniform deformation of the porous structure.The addition of reinforcing layer increases the compressive yield strength of sandwich-structured composite materials by 124%under the condition of limited reduction of porosity,and the yield strength increases from 4.6 to 10.3 MPa. 展开更多
关键词 beta titanium alloy sandwich-structured composite in-situ micro-computed tomography finite element modeling compressive behavior
下载PDF
Electrospinning of a sandwich-structured membrane with sustained release capability and long-term anti-inflammatory effects for dental pulp regeneration
2
作者 Fenghe Yang Jiangxue Wang +5 位作者 Xiaoyu Li Zhenzhen Jia Qiang Wang Dazhi Yu Jinyu Li Xufeng Niu 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2022年第2期305-317,共13页
Current electro spun membranes used for pulp capping still lack the sustained-release capability and long-term anti-inflammatory effects that are favorable for dental pulp regeneration.In this work,a single-layered po... Current electro spun membranes used for pulp capping still lack the sustained-release capability and long-term anti-inflammatory effects that are favorable for dental pulp regeneration.In this work,a single-layered poly(lac tic acid)(PLA)electro spun membrane loaded with amorphous calcium phosphate(ACP)and aspirin(PLA/ACP/Aspirin membrane,i.e.,PA A membrane)is sandwiched between two poly(lactic-co-glycolic acid)(PLGA)electro spun membranes as a novel sandwich-structured PLGA and PA A composite electro spun membrane(PLGA-PAA membrane)to resolve the need for sustained-release design and anti-inflammatory effects.Contact angle measurements indicate that the PLGA-PAA membrane is more hydrophilic than the PAA membrane.An in vitro release study reveals that PLGA membranes coated on PAA membrane could slightly slow down ion release,while signiificantly prolonging aspirin release.We also co-cultured membranes with dental pulp stem cells(DPSCs)and human monocytic THP-1 cells to evaluate their osteogenic ability and anti-inflammatory effects,respectively.Compared with the PAA membrane,the PLGA-PAA membrane promotes cell adhesion,proliferation,and osteogenic differentiation.A prolonged anti-inflammatory effect of up to 18 days is also observed in the PLGA-PAA group.The results suggest a promising strategy for fabricating an electro spun membrane system with controlled release capabilities and long-term anti-inflammatory effects for use as pulp-capping material for regeneration of the dentin-pulp complex. 展开更多
关键词 ELECTROSPINNING sandwich-structured Pulp capping Controlled release Anti-inflammatory effects
下载PDF
Design of a biofluid-absorbing bioactive sandwich-structured Zn-Si bioceramic composite wound dressing for hair follicle regeneration and skin burn wound healing 被引量:8
3
作者 Zhaowenbin Zhang Wenbo Li +8 位作者 Ying Liu Zhigang Yang Lingling Ma Hui Zhuang Endian Wang Chengtie Wu Zhiguang Huan Feng Guo Jiang Chang 《Bioactive Materials》 SCIE 2021年第7期1910-1920,共11页
The deep burn skin injures usually severely damage the dermis with the loss of hair follicle loss,which are difficult to regenerate.Furthermore,severe burns often accompanied with large amount of wound exudates making... The deep burn skin injures usually severely damage the dermis with the loss of hair follicle loss,which are difficult to regenerate.Furthermore,severe burns often accompanied with large amount of wound exudates making the wound moist,easily infected,and difficult to heal.Therefore,it is of great clinical significance to develop wound dressings to remove wound exudates and promote hair follicle regeneration.In this study,a sandwich-structured wound dressing(SWD)with Janus membrane property was fabricated by hot compression molding using hydrophilic zinc silicate bioceramics(Hardystonite,ZnCS)and hydrophobic polylactic acid(PLA).This unique organic/inorganic Janus membrane structure revealed excellent exudate absorption property and effectively created a dry wound environment.Meanwhile,the incorporation of ZnCS bioceramic particles endowed the dressing with the bioactivity to promote hair follicle regeneration and wound healing through the release of Zn^(2+)and SiO^(2-)_(3)ions,and this bioactivity of the wound dressing is mainly attributed to the synergistic effect of Zn^(2+)and SiO^(2-)_(3)to promote the recruitment,viability,and differentiation of hair follicle cells.Our study demonstrates that the utilization of the Janus membrane and synergistic effect of different type bioactive ions are effective approaches for the design of wound dressings for burn wound healing. 展开更多
关键词 Burn wound healing Hair follicle regeneration Zn^(2+)and SiO^(2-)_(3) sandwich-structured wound dressing Janus membrane
原文传递
Analysis of a New Composite Material for Watercraft Manufacturing 被引量:1
4
作者 Alexandre Wahrhaftig Henrique Ribeiro +1 位作者 Ademar Nascimento Milton Filho 《Journal of Marine Science and Application》 CSCD 2016年第3期336-342,共7页
In this paper, we investigate the properties of an alternative material for use in marine engineering, namely a rigid and light sandwich-structured composite made of expanded polystyrene and fiberglass. Not only does ... In this paper, we investigate the properties of an alternative material for use in marine engineering, namely a rigid and light sandwich-structured composite made of expanded polystyrene and fiberglass. Not only does this material have an improved section modulus, but it is also inexpensive, light, easy to manipulate, and commercially available in various sizes. Using a computer program based on the finite element method, we calculated the hogging and sagging stresses and strains acting on a prismatic boat model composed of this material, and determined the minimum sizes and maximum permissible stresses to avoid deformation. Finally, we calculated the structural weight of the resulting vessel for comparison with another structure of comparable dimensions constructed from the commonly used core material Divinycell. 展开更多
关键词 naval construction computational analysis composite material sandwich-structure expanded polystyrene FIBERGLASS composite structure concepts finite element method economic viability
下载PDF
Preparation, Characterization and Frictional Properties of Silane Self-Assembled Elastomeric Nanocomposite Polymer Layers
5
作者 程广贵 丁建宁 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第1期75-78,共4页
A novel surface modification method was proposed to improve the tribological property of Si. Multilayers were grown on Si(100) substrate by self-assembling monolayer (SAMs) method and filtered catholic vacuum arc ... A novel surface modification method was proposed to improve the tribological property of Si. Multilayers were grown on Si(100) substrate by self-assembling monolayer (SAMs) method and filtered catholic vacuum arc (FCVA) technique. The film composition and structure were characterized by using x-ray photoelectron spectroscope (XPS) and Raman spectroscopy (Raman). Surface morphology and the roughness were also analyzed by an atomic force microscope (AFM) and a scanning electron microscopy (SEM). The frictional behaviors of the films were evaluated by a UMT tester. Results showed that elastomeric nanocomposite monolayer prepared by SAM was uniformly distributed and isotropy, and the diamond-like carbon (DLC) film was successfully deposited by the FCVA technique. The friction coefficients of the prepared samples were in the range of 0.108-0.188. Furthermore, the friction coefficient slightly increased but the surface quality of the wear trace was improved after adding the copolymer elastomeric macromolecules SEBS on aminopropyl-triethoxysilane (APS) layer due to the inherent long chain of SEBS which abated the immediate impulsion at the interface and changed the kinetic energy into elastic potential energy, and stored it in SEBS. 展开更多
关键词 nanocomposite polymer layers DLC tribological property energy dissipation sandwich-structure
下载PDF
Pt-Al<sub>2</sub>OM<sub>3</sub>Composite Material Designed for Cyclic Production of Optical Glasses under High Temperature Conditions
6
作者 Aleksandr Bochegov Aleksandr Ermakov Irina Vandysheva 《Journal of Materials Science and Chemical Engineering》 2014年第3期30-36,共7页
The article considers one of the possible approaches to the solution of an urgent issue of metal consumption reduction, increase of operating life and maximum operating temperature as well as reduction of irrecoverabl... The article considers one of the possible approaches to the solution of an urgent issue of metal consumption reduction, increase of operating life and maximum operating temperature as well as reduction of irrecoverable losses of platinum products and alloys when operating under high temperature conditions, particularly for glassblowing and single crystal growing crucibles. A two-layered composite material based on platinum-group metals and corundum plasma ceramics is thoroughly investigated. A successful experience of crucibles exploitation, designed for production of high temperature optical glasses from the composite and results of the research on composite material specimens are described. 展开更多
关键词 sandwich-structured Composite Material Plasmaceramics Platinum-Group Metals Reduction of Metal Consumption Crucibles for Glassblowing and Single Crystal Growing HIGH TEMPERATURE Creep HIGH TEMPERATURE Strength and Heat Resistance Irrecoverable Losses
下载PDF
Enhancement of shear stability of a Fe-based amorphous alloy using electrodeposited Ni layers 被引量:4
7
作者 Y.C.Wang X.M.Luo +3 位作者 L.J.Chen H.W.Yang B.Zhang G.P.Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第12期2283-2289,共7页
Tensile and fracture behaviors of sandwich-structured composites consisting of a Fe-based amorphous layer with a constant thickness and ultrafine-grained Ni layers with different thicknesses were investigated. The res... Tensile and fracture behaviors of sandwich-structured composites consisting of a Fe-based amorphous layer with a constant thickness and ultrafine-grained Ni layers with different thicknesses were investigated. The results indicate that the initiation and the stable propagation of the shear band in the amorphous layer was dominated by the Ni layers due to their strong constraint role. The catastrophic fracture of the amorphous layer was postponed in the sandwich composites through properly increasing the constrained Ni layer thickness, which effectively decreased the shear stress on the shear fracture planes of the amorphous layer, and thus led to stable propagation of the primary SB characterized by the increase in the smooth region size of the shear band. 展开更多
关键词 sandwich-structured composites Amorphous alloy Shear stability PLASTICITY FRACTURE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部