Though aboveground biomass(AGB) has an important contribution to the global carbon cycle,the information about storage and climatic effects of AGB is scare in Three-River Source Region(TRSR)shrub ecosystems. This stud...Though aboveground biomass(AGB) has an important contribution to the global carbon cycle,the information about storage and climatic effects of AGB is scare in Three-River Source Region(TRSR)shrub ecosystems. This study investigated AGB storage and its climatic controls in the TRSR alpine shrub ecosystems using data collected from 23 sites on the Tibetan Plateau from 2011 to 2013. We estimated the AGB storage(both shrub layer biomass and grass layer biomass) in the alpine shrubs as 37.49 Tg, with an average density of 1447.31 g m^(-2). Biomass was primarily accumulated in the shrub layer, which accounted for 92% of AGB, while the grass layer accounted for only 8%. AGB significantly increased with the mean annual temperature(P < 0.05). The effects of the mean annual precipitation on AGB were not significant. These results suggest that temperature,rather than precipitation, has significantly effects on of aboveground vegetation growth in the TRSR alpine shrub ecosystems. The actual and potential increase in AGB density was different due to global warming varies among different regions of the TRSR. We conclude that long-term monitoring of dynamic changes is necessary to improve the accuracy estimations of potential AGB carbon sequestration across the TRSR alpine shrub ecosystems.展开更多
Regional climate model (RegCM3) was applied to explore the possible effects of land use changes (e.g., grassland degradation in this study) on local and regional climate over the Sanjiangyuan region in the Qinghai...Regional climate model (RegCM3) was applied to explore the possible effects of land use changes (e.g., grassland degradation in this study) on local and regional climate over the Sanjiangyuan region in the Qinghai-Tibet Plateau. Two multiyear (1991-1999) numerical simulation experiments were conducted: one was a control experiment with current land use and the other was a desertification experiment with potential grassland degradation. Preliminary analysis indicated that RegCM3 is appropriate for simulating land- climate interactions, as the patterns of the simulated surface air temperature, the summer precipitation, and the geopotential height fields are consistent with the observed values. The desertification over the Sanjiangyuan region will cause different climate effects in different regions depending on the surrounding environment and climate characteristics. The area with obvious change in surface air temperature inducing by grassland degradation over the Sanjiangyuan region is located in the Qinghai-Tibet Plateau. A winter surface air temperature drop and the other seasons' surface air temperature increase will be observed over the Qinghai-Tibet Plateau based on two numerical simulation experiments. Surface air temperature changes in spring are the largest (0.46℃), and in winter are the smallest (smaller than 0.03℃), indicating an increasing mean annual surface air temperature over the Qinghai-Tibet Plateau. Surface air temperature changes will be smaller and more complex over the surrounding region, with minor winter changes for the regions just outside the plateau and notable summer changes over the north of the Yangtze River. The reinforced summer heat source in the plateau will lead to an intensification of heat low, causing the West Pacific subtropical high to retreat eastward. This will be followed by a decrease of precipitation in summer. The plateau's climate tends to become warm and dry due to the grassland degradation over the Sanjiangyuan region.展开更多
This study explores the microphysical responses to a cloud seeding operation in the Sanjiangyuan region, China. The cloud seeding was performed using a zigzag flight pattern, while the detection phase was accomplished...This study explores the microphysical responses to a cloud seeding operation in the Sanjiangyuan region, China. The cloud seeding was performed using a zigzag flight pattern, while the detection phase was accomplished using a back-and-forth flight pattern through the top of a stratocumulus layer. Global Position System(GPS) and Particle Measuring System(PMS) data obtained during the operation are used to determine the efective cloud area before and after the operation, diferentiate the phase states of cloud particles, and analyze changes in the concentrations of liquid cloud particles and ice crystals, the evolution of the cloud particle spectrum, and the content of supercooled water. The median diameter of liquid cloud particles in the area of the cloud-seeding operation was 3.5–18.5 μm, most cloud particles observed in the 21.5–45.5-μm size regime were ice crystals, while all particles of size 50 μm and above were in the ice phase. Changes in the concentration and typical diameter of cloud particles within 36 km downwind of the cloudseeding operation did not exceed natural fluctuations in the cloud area before the operation; however, the concentration of liquid cloud particles decreased substantially in areas with high concentrations of supercooled water(concentrations of supercooled water exceeding 0.01 g m 3). The concentration of ice crystals within the measuring range of the Forward Scattering Spectrometer Probe(FSSP) increased substantially, the water content of ice-phase particles increased, and the average supercooled water content in the cloud decreased from(68.3± 23.1)% before the operation to(34.2± 12.4)%. The efects of cloud seeding were more pronounced in parts of the cloud where the content of supercooled water was higher. Little to no efects were observed in parts of the cloud with low concentrations of supercooled water.展开更多
基金funded by the National Science and Technology Support Project (Grant No.2014BAC05B01)National Program on Basic Work Project of China (Grant No.2015FY11030001)+1 种基金Strategic Priority Research Program of CAS (Grant No.XDA0505030304)National Natural Science Foundation of China (Grant No.40801076)
文摘Though aboveground biomass(AGB) has an important contribution to the global carbon cycle,the information about storage and climatic effects of AGB is scare in Three-River Source Region(TRSR)shrub ecosystems. This study investigated AGB storage and its climatic controls in the TRSR alpine shrub ecosystems using data collected from 23 sites on the Tibetan Plateau from 2011 to 2013. We estimated the AGB storage(both shrub layer biomass and grass layer biomass) in the alpine shrubs as 37.49 Tg, with an average density of 1447.31 g m^(-2). Biomass was primarily accumulated in the shrub layer, which accounted for 92% of AGB, while the grass layer accounted for only 8%. AGB significantly increased with the mean annual temperature(P < 0.05). The effects of the mean annual precipitation on AGB were not significant. These results suggest that temperature,rather than precipitation, has significantly effects on of aboveground vegetation growth in the TRSR alpine shrub ecosystems. The actual and potential increase in AGB density was different due to global warming varies among different regions of the TRSR. We conclude that long-term monitoring of dynamic changes is necessary to improve the accuracy estimations of potential AGB carbon sequestration across the TRSR alpine shrub ecosystems.
基金Supported by the National Natural Science Foundation of China under Grant No.40671176the Science and Technology Commission of Shanghai Municipality under Grant Nos.08JC1408500 and 072512021
文摘Regional climate model (RegCM3) was applied to explore the possible effects of land use changes (e.g., grassland degradation in this study) on local and regional climate over the Sanjiangyuan region in the Qinghai-Tibet Plateau. Two multiyear (1991-1999) numerical simulation experiments were conducted: one was a control experiment with current land use and the other was a desertification experiment with potential grassland degradation. Preliminary analysis indicated that RegCM3 is appropriate for simulating land- climate interactions, as the patterns of the simulated surface air temperature, the summer precipitation, and the geopotential height fields are consistent with the observed values. The desertification over the Sanjiangyuan region will cause different climate effects in different regions depending on the surrounding environment and climate characteristics. The area with obvious change in surface air temperature inducing by grassland degradation over the Sanjiangyuan region is located in the Qinghai-Tibet Plateau. A winter surface air temperature drop and the other seasons' surface air temperature increase will be observed over the Qinghai-Tibet Plateau based on two numerical simulation experiments. Surface air temperature changes in spring are the largest (0.46℃), and in winter are the smallest (smaller than 0.03℃), indicating an increasing mean annual surface air temperature over the Qinghai-Tibet Plateau. Surface air temperature changes will be smaller and more complex over the surrounding region, with minor winter changes for the regions just outside the plateau and notable summer changes over the north of the Yangtze River. The reinforced summer heat source in the plateau will lead to an intensification of heat low, causing the West Pacific subtropical high to retreat eastward. This will be followed by a decrease of precipitation in summer. The plateau's climate tends to become warm and dry due to the grassland degradation over the Sanjiangyuan region.
基金Supported by the Research Fund of the Doctoral Program of Higher Education of China (20113228110002)Priority Academic Program Development (PAPD) of Jiangsu Higher Education InstitutionsChina Meteorological Administration Special Pwblic Welfare Research Fund (GYHY200906024)
文摘This study explores the microphysical responses to a cloud seeding operation in the Sanjiangyuan region, China. The cloud seeding was performed using a zigzag flight pattern, while the detection phase was accomplished using a back-and-forth flight pattern through the top of a stratocumulus layer. Global Position System(GPS) and Particle Measuring System(PMS) data obtained during the operation are used to determine the efective cloud area before and after the operation, diferentiate the phase states of cloud particles, and analyze changes in the concentrations of liquid cloud particles and ice crystals, the evolution of the cloud particle spectrum, and the content of supercooled water. The median diameter of liquid cloud particles in the area of the cloud-seeding operation was 3.5–18.5 μm, most cloud particles observed in the 21.5–45.5-μm size regime were ice crystals, while all particles of size 50 μm and above were in the ice phase. Changes in the concentration and typical diameter of cloud particles within 36 km downwind of the cloudseeding operation did not exceed natural fluctuations in the cloud area before the operation; however, the concentration of liquid cloud particles decreased substantially in areas with high concentrations of supercooled water(concentrations of supercooled water exceeding 0.01 g m 3). The concentration of ice crystals within the measuring range of the Forward Scattering Spectrometer Probe(FSSP) increased substantially, the water content of ice-phase particles increased, and the average supercooled water content in the cloud decreased from(68.3± 23.1)% before the operation to(34.2± 12.4)%. The efects of cloud seeding were more pronounced in parts of the cloud where the content of supercooled water was higher. Little to no efects were observed in parts of the cloud with low concentrations of supercooled water.