The study aimed to optimize the induction and differentiation medium by exploreing different tissue culture of Saposhnikovia divaricata (Turcz.) Schischk. In tissue culture with the root, stem segments, young leaf, ...The study aimed to optimize the induction and differentiation medium by exploreing different tissue culture of Saposhnikovia divaricata (Turcz.) Schischk. In tissue culture with the root, stem segments, young leaf, cotyledonary node and axillary bud of Saposhnikovia divaricata (Turcz.) Schischk as explants, a lot of plantleles were obtained and the corresponding plant regeneration-system was established. The results showed that when use MS+1.0 mg·L^-1 6-BA+0.2 mg·L^-1 NAA as callus induction medium, the cotyledonary node had the highest bourgeon rate, and its callus was better than any others; MS+2 mg·L^-1 6-BA+0.4 mg·L^-1 NAA was the best adventitious buds induction medium, and the best adventitious buds induced condition was 3% sucrose as carbon source, illumination for 12-14 h·d^-1 and pH 5.8, The best rootage medium was 1/2 MS+0.5 mg·L^-1 NAA.展开更多
Objective: Early bolting of Saposhnikovia divaricata has seriously hindered its medicinal value and sustainable development of resources. The molecular mechanism of bolting and fowering of S. divaricata is still uncle...Objective: Early bolting of Saposhnikovia divaricata has seriously hindered its medicinal value and sustainable development of resources. The molecular mechanism of bolting and fowering of S. divaricata is still unclear and worth of research. In our study, we explored the transcriptome of the genes related to the bolting and fowering of S. divaricata.Methods: The transcriptome library was constructed, sequenced, assembled and annotated from the bolting and unbolting leaves of S. divaricata by high-throughput sequencing at the bud and fowering stage.Focus on the pathways related to bolting and fowering in plants, and exploring genes. The expression of seven candidate genes was verified by real-time fuorescence quantitative PCR(qRT-PCR).Results: Transcriptome results showed that 249 889 422 high-quality clean reads were obtained. A total of 67 866 unigenes were assembled with an average length of 948.1 bp. Trinity de Novo assembly produced 67 866 unigenes with an average length of 948.1 bp. Among 993 differentially expressed genes,484 genes were significantly up-regulated and 509 genes were down-regulated in the SdM group. A total of 79 GO terms were significantly enriched for differentially expressed genes. KEGG results showed that 11 154 unigenes were enriched in 89 pathways. And 21 candidate genes related to bolting and fowering of S. divaricata were excavated. The qRT-PCR results showed that expression trends of HDA9, PHYB, AP2,TIR1, Hsp90, CaM, and IAA7 were consistent with transcriptomic sequencing results. In addition, RNA-seq had identified 10 740 transcription factors and classified them into 58 families by their conserved domains. Further studies showed that the transcription factors regulating the fowering of S. divaricata were mainly distributed in the NAC, MYB_related, HB-other, ARF, and AP2 families.Conclusion: Based on the results of this study, it was found that the plant hormone signal transduction pathway was one of the decisive factors to control bolting and fowering. Among them, auxin related genes IAA and TIR1 are the key genes in the bolting and fowering process of S. divaricata.展开更多
基金Supported by Natural Science Foundation of Heilongjiang Province (C2005-31)
文摘The study aimed to optimize the induction and differentiation medium by exploreing different tissue culture of Saposhnikovia divaricata (Turcz.) Schischk. In tissue culture with the root, stem segments, young leaf, cotyledonary node and axillary bud of Saposhnikovia divaricata (Turcz.) Schischk as explants, a lot of plantleles were obtained and the corresponding plant regeneration-system was established. The results showed that when use MS+1.0 mg·L^-1 6-BA+0.2 mg·L^-1 NAA as callus induction medium, the cotyledonary node had the highest bourgeon rate, and its callus was better than any others; MS+2 mg·L^-1 6-BA+0.4 mg·L^-1 NAA was the best adventitious buds induction medium, and the best adventitious buds induced condition was 3% sucrose as carbon source, illumination for 12-14 h·d^-1 and pH 5.8, The best rootage medium was 1/2 MS+0.5 mg·L^-1 NAA.
基金supported by China Agriculture Research System of MOF and MARA (No. CARS-21)。
文摘Objective: Early bolting of Saposhnikovia divaricata has seriously hindered its medicinal value and sustainable development of resources. The molecular mechanism of bolting and fowering of S. divaricata is still unclear and worth of research. In our study, we explored the transcriptome of the genes related to the bolting and fowering of S. divaricata.Methods: The transcriptome library was constructed, sequenced, assembled and annotated from the bolting and unbolting leaves of S. divaricata by high-throughput sequencing at the bud and fowering stage.Focus on the pathways related to bolting and fowering in plants, and exploring genes. The expression of seven candidate genes was verified by real-time fuorescence quantitative PCR(qRT-PCR).Results: Transcriptome results showed that 249 889 422 high-quality clean reads were obtained. A total of 67 866 unigenes were assembled with an average length of 948.1 bp. Trinity de Novo assembly produced 67 866 unigenes with an average length of 948.1 bp. Among 993 differentially expressed genes,484 genes were significantly up-regulated and 509 genes were down-regulated in the SdM group. A total of 79 GO terms were significantly enriched for differentially expressed genes. KEGG results showed that 11 154 unigenes were enriched in 89 pathways. And 21 candidate genes related to bolting and fowering of S. divaricata were excavated. The qRT-PCR results showed that expression trends of HDA9, PHYB, AP2,TIR1, Hsp90, CaM, and IAA7 were consistent with transcriptomic sequencing results. In addition, RNA-seq had identified 10 740 transcription factors and classified them into 58 families by their conserved domains. Further studies showed that the transcription factors regulating the fowering of S. divaricata were mainly distributed in the NAC, MYB_related, HB-other, ARF, and AP2 families.Conclusion: Based on the results of this study, it was found that the plant hormone signal transduction pathway was one of the decisive factors to control bolting and fowering. Among them, auxin related genes IAA and TIR1 are the key genes in the bolting and fowering process of S. divaricata.