In recent years diamonds and other exotic minerals have been recovered from mantle peridotites and high-Cr chromitites of a number of ophiolites of different age and different tectonic environments. Here we report a s...In recent years diamonds and other exotic minerals have been recovered from mantle peridotites and high-Cr chromitites of a number of ophiolites of different age and different tectonic environments. Here we report a similar collection of minerals from the Sartohay ophiolite of Xinjiang Province, western China, which is characterized by having high-Al chromitites. Several samples of massive podiform chromitite with an aggregate weight of nearly 900 kg yielded diamonds, moissanite and other highly reduced minerals, as well as common crustal minerals. Thus far, more than 20 grains each of diamond and moissanite have been recovered from heavy mineral separates of the chromitites. The diamonds are all 100-200 μm in size and range in color from pale yellow to reddish-orange to colorless. Most of the grains are anhedral to subhedral octahedra, commonly with elongate forms exhibiting well-developed striations. They all display characteristic Raman spectra with shifts between 1325 cm^-1 and 1333 cm^-1, mostly 1331.51 cm^-1 or 1326.96 cm^-1. The moissanite grains are light blue to dark blue, broken crystals, 50-150 μm across, commonly occurring as small flakes or fragments. Their typical Raman spectra have shifts at 762 cm^-1, 785 cm^-1, and 966 cm^-1. This investigation extends the occurrence of diamonds and moissanite to a Paleozoic ophiolite in the Central Asian Orogenic Belt and demonstrates that these minerals can also occur in high-Al chromitites. We conclude that diamonds and moissanite are likely to be ubiquitous in ophiolitic mantle peridotites and chromitites.展开更多
The west Junggar,located in the eastern part of Balkash-Junggar tectonic province,is a major component of the core of the Central Asian metallogenic region.This area is characterized by occurrences of ophiolitic m...The west Junggar,located in the eastern part of Balkash-Junggar tectonic province,is a major component of the core of the Central Asian metallogenic region.This area is characterized by occurrences of ophiolitic mélanges,such as the Sartohay ophiolitic mélange in the NE and the Tangbale ophiolitic mélange in the west.As a hydrothermal alteration product of serpentinite in the Sartohay ophiolitic mélange,listwaenite lenses are gold-mineralized and crop out on surface in the ophiolitic mélange via weathering of exhumated hanging wall of fault zone.Listwaenite is mainly composed of magnesite,quartz,dolomite,and trace amounts of mariposite,chromian spinel,talc and sulfide.A vertical thermal gradient model for the hydrothermal alteration shows that serpentinite would first be transformed to talc schist,then into listwaenite as the ophiolite slices continued to rise along shear zone,with XCO2,oxygen and sulfur fugacity increase and temperature decrease.Both serpentine and magnetite were progressively destroyed during the transformation from serpentinite to talc schist,andcompletely vanished in listwaenite,while mariposite generated in weakly deformed to mylonitized listwaenite.Concentrations of most trace elements including high field strength elements and metallogenic elements,increasing from undeformed,through weakly deformed,to mylonitized listwaenite,show a positive correlation with deformation degree and content of apatite,rutile,monazite,zircon and sulfide in listwaenite.The shear zone served as pathways for percolation and accumulation of fluid and trace elements during the metasomatism from serpentinite to listwaenite.Compared to undeformed listwaenite,mylonitized listwaenite will be more favorable to be fractured and brecciated due to more intense shearing,which caused strong metasomatic reaction and then induced trace element-bearing mylonitized listwaenite.展开更多
Listwaenite,carbonate-talc schist,and serpentinite of Sartohay ophioliticmélange,Xinjiang,northwestern China,contain variably altered chromian spinels.During the hydrothermal alteration from serpentinite to listw...Listwaenite,carbonate-talc schist,and serpentinite of Sartohay ophioliticmélange,Xinjiang,northwestern China,contain variably altered chromian spinels.During the hydrothermal alteration from serpentinite to listwaenite展开更多
The Central Asian Orogenic Belt(CAOB)is a huge tectonic mélange that lies between the North China Craton and the Siberian Block.It is composed of multiple orogenic belts,continental fragments,magmatic and metamor...The Central Asian Orogenic Belt(CAOB)is a huge tectonic mélange that lies between the North China Craton and the Siberian Block.It is composed of multiple orogenic belts,continental fragments,magmatic and metamorphic rocks,suture zones and discontinuous ophiolite belts.Although the Hegenshan and Sartohay ophiolites are separated by nearly 3000 km and lie in completely different parts of the CAOB,they are remarkably similar in many respects.Both are composed mainly of serpentinized peridotite and dunite,with minor gabbro and sparse basalt.They both host significant podiform chromitites that consist of high-Al,refractory magnesiochromite with Cr#s[100Cr/(Cr+Al)]averaging<60.The Sartohay ophiolite has a zircon U-Pb age of ca.300 Ma and has been intruded by granitic plutons of similar age,resulting in intense hydrothermal activity and the formation of gold-bearing listwanites.The age of the Hegenshan is not firmly established but is thought to have formed in the Carboniferous.Like many other ophiolites that we have investigated in other orogenic belts,the chromitites in these two bodieshave abundant diamonds,as well as numerous super-reduced and crustal minerals.The diamonds are mostly,colorless to pale yellow,200-300μm across and have euhedral to anhedral shapes.They all have low carbon isotopes(δ14C=-18 to-29)and some have visible inclusions.These are accompanied by numerous super-reduced minerals such as moissanite,native elements(Fe,Cr,Si,Al,Mn),and alloys(e.g.,Ni-Mn-Fe,Ni-Fe-Al,Ni-Mn-Co,Cr-Ni-Fe,Cr-Fe,Cr-Fe-Mn),as well as a wide range of oxides,sulfides and silicates.Grains of zircon are abundant in the chromitites of both ophiolites and range in age from Precambrian to Cretaceous,reflecting both incorporation of old zircons and modification of grains by hydrothermal alteration.Our investigation confirms that high-Al,refractory chromitites in these two ophiolites have the same range of exotic minerals as high-Cr metallurgical chromitites such as those in the Luobusa ophiolite of Tibet.These collections of exotic minerals in ophiolitic chromitites indicate complex,multi-stage recycling of oceanic and continental crustal material at least to the mantle transition zone,followed by uprise and emplacement of the peridotites into relatively shallow ophiolites.展开更多
It is significant for recognizing the origin of chromitites to research the primary mineral inclusions in chromitites.A large number of primary mineral inclusions including CPXs,OPXs,olivines,aspidolites,Na-Cr pargasi...It is significant for recognizing the origin of chromitites to research the primary mineral inclusions in chromitites.A large number of primary mineral inclusions including CPXs,OPXs,olivines,aspidolites,Na-Cr pargasites,CPX展开更多
基金funded by grants from the National Natural Science Foundation of China (No.40930313)the Ministry of Land and Resources of the People’s Republic of China (No.201011034)the China Geological Survey (No.12120114057701,No.12120114061801 and No.12120114061501)
文摘In recent years diamonds and other exotic minerals have been recovered from mantle peridotites and high-Cr chromitites of a number of ophiolites of different age and different tectonic environments. Here we report a similar collection of minerals from the Sartohay ophiolite of Xinjiang Province, western China, which is characterized by having high-Al chromitites. Several samples of massive podiform chromitite with an aggregate weight of nearly 900 kg yielded diamonds, moissanite and other highly reduced minerals, as well as common crustal minerals. Thus far, more than 20 grains each of diamond and moissanite have been recovered from heavy mineral separates of the chromitites. The diamonds are all 100-200 μm in size and range in color from pale yellow to reddish-orange to colorless. Most of the grains are anhedral to subhedral octahedra, commonly with elongate forms exhibiting well-developed striations. They all display characteristic Raman spectra with shifts between 1325 cm^-1 and 1333 cm^-1, mostly 1331.51 cm^-1 or 1326.96 cm^-1. The moissanite grains are light blue to dark blue, broken crystals, 50-150 μm across, commonly occurring as small flakes or fragments. Their typical Raman spectra have shifts at 762 cm^-1, 785 cm^-1, and 966 cm^-1. This investigation extends the occurrence of diamonds and moissanite to a Paleozoic ophiolite in the Central Asian Orogenic Belt and demonstrates that these minerals can also occur in high-Al chromitites. We conclude that diamonds and moissanite are likely to be ubiquitous in ophiolitic mantle peridotites and chromitites.
基金Financial support was provided by the International Sciences & Technology Cooperation Program of China (Grant No. 2010DFB23390)the National Natural Science Foundation of China (Grant No. 41372062)
文摘The west Junggar,located in the eastern part of Balkash-Junggar tectonic province,is a major component of the core of the Central Asian metallogenic region.This area is characterized by occurrences of ophiolitic mélanges,such as the Sartohay ophiolitic mélange in the NE and the Tangbale ophiolitic mélange in the west.As a hydrothermal alteration product of serpentinite in the Sartohay ophiolitic mélange,listwaenite lenses are gold-mineralized and crop out on surface in the ophiolitic mélange via weathering of exhumated hanging wall of fault zone.Listwaenite is mainly composed of magnesite,quartz,dolomite,and trace amounts of mariposite,chromian spinel,talc and sulfide.A vertical thermal gradient model for the hydrothermal alteration shows that serpentinite would first be transformed to talc schist,then into listwaenite as the ophiolite slices continued to rise along shear zone,with XCO2,oxygen and sulfur fugacity increase and temperature decrease.Both serpentine and magnetite were progressively destroyed during the transformation from serpentinite to talc schist,andcompletely vanished in listwaenite,while mariposite generated in weakly deformed to mylonitized listwaenite.Concentrations of most trace elements including high field strength elements and metallogenic elements,increasing from undeformed,through weakly deformed,to mylonitized listwaenite,show a positive correlation with deformation degree and content of apatite,rutile,monazite,zircon and sulfide in listwaenite.The shear zone served as pathways for percolation and accumulation of fluid and trace elements during the metasomatism from serpentinite to listwaenite.Compared to undeformed listwaenite,mylonitized listwaenite will be more favorable to be fractured and brecciated due to more intense shearing,which caused strong metasomatic reaction and then induced trace element-bearing mylonitized listwaenite.
文摘Listwaenite,carbonate-talc schist,and serpentinite of Sartohay ophioliticmélange,Xinjiang,northwestern China,contain variably altered chromian spinels.During the hydrothermal alteration from serpentinite to listwaenite
文摘The Central Asian Orogenic Belt(CAOB)is a huge tectonic mélange that lies between the North China Craton and the Siberian Block.It is composed of multiple orogenic belts,continental fragments,magmatic and metamorphic rocks,suture zones and discontinuous ophiolite belts.Although the Hegenshan and Sartohay ophiolites are separated by nearly 3000 km and lie in completely different parts of the CAOB,they are remarkably similar in many respects.Both are composed mainly of serpentinized peridotite and dunite,with minor gabbro and sparse basalt.They both host significant podiform chromitites that consist of high-Al,refractory magnesiochromite with Cr#s[100Cr/(Cr+Al)]averaging<60.The Sartohay ophiolite has a zircon U-Pb age of ca.300 Ma and has been intruded by granitic plutons of similar age,resulting in intense hydrothermal activity and the formation of gold-bearing listwanites.The age of the Hegenshan is not firmly established but is thought to have formed in the Carboniferous.Like many other ophiolites that we have investigated in other orogenic belts,the chromitites in these two bodieshave abundant diamonds,as well as numerous super-reduced and crustal minerals.The diamonds are mostly,colorless to pale yellow,200-300μm across and have euhedral to anhedral shapes.They all have low carbon isotopes(δ14C=-18 to-29)and some have visible inclusions.These are accompanied by numerous super-reduced minerals such as moissanite,native elements(Fe,Cr,Si,Al,Mn),and alloys(e.g.,Ni-Mn-Fe,Ni-Fe-Al,Ni-Mn-Co,Cr-Ni-Fe,Cr-Fe,Cr-Fe-Mn),as well as a wide range of oxides,sulfides and silicates.Grains of zircon are abundant in the chromitites of both ophiolites and range in age from Precambrian to Cretaceous,reflecting both incorporation of old zircons and modification of grains by hydrothermal alteration.Our investigation confirms that high-Al,refractory chromitites in these two ophiolites have the same range of exotic minerals as high-Cr metallurgical chromitites such as those in the Luobusa ophiolite of Tibet.These collections of exotic minerals in ophiolitic chromitites indicate complex,multi-stage recycling of oceanic and continental crustal material at least to the mantle transition zone,followed by uprise and emplacement of the peridotites into relatively shallow ophiolites.
文摘It is significant for recognizing the origin of chromitites to research the primary mineral inclusions in chromitites.A large number of primary mineral inclusions including CPXs,OPXs,olivines,aspidolites,Na-Cr pargasites,CPX