Industrial activities, through the human-induced release of Green House Gas (GHG) emissions, have beenidentified as the primary cause of global warming. Accurate and quantitative monitoring of these emissions isessent...Industrial activities, through the human-induced release of Green House Gas (GHG) emissions, have beenidentified as the primary cause of global warming. Accurate and quantitative monitoring of these emissions isessential for a comprehensive understanding of their impact on the Earth’s climate and for effectively enforcingemission regulations at a large scale. This work examines the feasibility of detecting and quantifying industrialsmoke plumes using freely accessible geo-satellite imagery. The existing systemhas so many lagging factors such aslimitations in accuracy, robustness, and efficiency and these factors hinder the effectiveness in supporting timelyresponse to industrial fires. In this work, the utilization of grayscale images is done instead of traditional colorimages for smoke plume detection. The dataset was trained through a ResNet-50 model for classification and aU-Net model for segmentation. The dataset consists of images gathered by European Space Agency’s Sentinel-2 satellite constellation from a selection of industrial sites. The acquired images predominantly capture scenesof industrial locations, some of which exhibit active smoke plume emissions. The performance of the abovementionedtechniques and models is represented by their accuracy and IOU (Intersection-over-Union) metric.The images are first trained on the basic RGB images where their respective classification using the ResNet-50model results in an accuracy of 94.4% and segmentation using the U-Net Model with an IOU metric of 0.5 andaccuracy of 94% which leads to the detection of exact patches where the smoke plume has occurred. This work hastrained the classification model on grayscale images achieving a good increase in accuracy of 96.4%.展开更多
The isotherm is an important feature of infrared satellite cloud images (ISCI), which can directly reveal substantial information of cloud systems. The isotherm extraction of ISCI can remove the redundant information ...The isotherm is an important feature of infrared satellite cloud images (ISCI), which can directly reveal substantial information of cloud systems. The isotherm extraction of ISCI can remove the redundant information and therefore helps to compress the information of ISCI. In this paper, an isotherm extraction method is presented. The main aggregate of clouds can be segmented based on mathematical morphology. T algorithm and IP algorithm are then applied to extract the isotherms from the main aggregate of clouds. A concrete example for the extraction of isotherm based on IBM SP2 is described. The result shows that this is a high efficient algorithm. It can be used in feature extractions of infrared images for weather forecasts.展开更多
The analysis of remote sensing image areas is needed for climate detec-tion and management,especially for monitoringflood disasters in critical environ-ments and applications.Satellites are mostly used to detect disast...The analysis of remote sensing image areas is needed for climate detec-tion and management,especially for monitoringflood disasters in critical environ-ments and applications.Satellites are mostly used to detect disasters on Earth,and they have advantages in capturing Earth images.Using the control technique,Earth images can be used to obtain detailed terrain information.Since the acquisi-tion of satellite and aerial imagery,this system has been able to detectfloods,and with increasing convenience,flood detection has become more desirable in the last few years.In this paper,a Big Data Set-based Progressive Image Classification Algorithm(PICA)system is introduced to implement an image processing tech-nique,detect disasters,and determine results with the help of the PICA,which allows disaster analysis to be extracted more effectively.The PICA is essential to overcoming strong shadows,for proper access to disaster characteristics to false positives by operators,and to false predictions that affect the impact of the disas-ter.The PICA creates tailoring and adjustments obtained from satellite images before training and post-disaster aerial image data patches.Two types of proposed PICA systems detect disasters faster and more accurately(95.6%).展开更多
This survey paper aims to show methods to analyze and classify field satellite images using deep learning and machine learning algorithms.Users of deep learning-based Convolutional Neural Network(CNN)technology to har...This survey paper aims to show methods to analyze and classify field satellite images using deep learning and machine learning algorithms.Users of deep learning-based Convolutional Neural Network(CNN)technology to harvest fields from satellite images or generate zones of interest were among the planned application scenarios(ROI).Using machine learning,the satellite image is placed on the input image,segmented,and then tagged.In contem-porary categorization,field size ratio,Local Binary Pattern(LBP)histograms,and color data are taken into account.Field satellite image localization has several practical applications,including pest management,scene analysis,and field tracking.The relationship between satellite images in a specific area,or contextual information,is essential to comprehending the field in its whole.展开更多
Fusing satellite(remote sensing)images is an interesting topic in processing satellite images.The result image is achieved through fusing information from spectral and panchromatic images for sharpening.In this paper,...Fusing satellite(remote sensing)images is an interesting topic in processing satellite images.The result image is achieved through fusing information from spectral and panchromatic images for sharpening.In this paper,a new algorithm based on based the Artificial bee colony(ABC)algorithm with peak signalto-noise ratio(PSNR)index optimization is proposed to fusing remote sensing images in this paper.Firstly,Wavelet transform is used to split the input images into components over the high and low frequency domains.Then,two fusing rules are used for obtaining the fused images.The first rule is“the high frequency components are fused by using the average values”.The second rule is“the low frequency components are fused by using the combining rule with parameter”.The parameter for fusing the low frequency components is defined by using ABC algorithm,an algorithm based on PSNR index optimization.The experimental results on different input images show that the proposed algorithm is better than some recent methods.展开更多
The growing demand for current and precise geographic information that pertains to urban areas has given rise to a significant interest in digital surface models that exhibit a high level of detail. Traditional method...The growing demand for current and precise geographic information that pertains to urban areas has given rise to a significant interest in digital surface models that exhibit a high level of detail. Traditional methods for creating digital surface models are insufficient to reflect the details of earth’s features. These models only represent three-dimensional objects in a single texture and fail to offer a realistic depiction of the real world. Furthermore, the need for current and precise geographic information regarding urban areas has been increasing significantly. This study proposes a new technique to address this problem, which involves integrating remote sensing, Geographic Information Systems (GIS), and Architecture Environment software environments to generate a detailed three-dimensional model. The processing of this study starts with: 1) Downloading high-resolution satellite imagery; 2) Collecting ground truth datasets from fieldwork; 3) Imaging nose removing; 4) Generating a Two-dimensional Model to create a digital surface model in GIS using the extracted building outlines; 5) Converting the model into multi-patch layers to construct a 3D model for each object separately. The results show that the 3D model obtained through this method is highly detailed and effective for various applications, including environmental studies, urban development, expansion planning, and shape understanding tasks.展开更多
The measurement of solar irradiation is still a necessary basis for planning the installation of photovoltaic parks and concentrating solar power systems. The meteorological stations for the measurement of the solar f...The measurement of solar irradiation is still a necessary basis for planning the installation of photovoltaic parks and concentrating solar power systems. The meteorological stations for the measurement of the solar flux at any point of the earth’s surface are still insufficient worldwide;moreover, these measurements on the ground are expensive, and rare. To overcome this shortcoming, the exploitation of images from the European meteorological satellites of the second generation MSG is a reliable solution to estimate the global horizontal irradiance GHI on the ground with a good spatial and temporal coverage. Since 2004, the new generation MSG satellites provide images of Africa and Europe every 15 minutes with a spatial resolution of about 1 km × 1 km at the sub-satellite point. The objective of this work was to apply the Brazil-SR method to evaluate the global horizontal GHI irradiance for the entire Moroccan national territory from the European Meteosat Second Generation MSG satellite images. This bibliographic review also exposed the standard model of calculation of GHI in clear sky by exploiting the terrestrial meteorological measurements.展开更多
Satellite image classification is crucial in various applications such as urban planning,environmental monitoring,and land use analysis.In this study,the authors present a comparative analysis of different supervised ...Satellite image classification is crucial in various applications such as urban planning,environmental monitoring,and land use analysis.In this study,the authors present a comparative analysis of different supervised and unsupervised learning methods for satellite image classification,focusing on a case study in Casablanca using Landsat 8 imagery.This research aims to identify the most effective machine-learning approach for accurately classifying land cover in an urban environment.The methodology used consists of the pre-processing of Landsat imagery data from Casablanca city,the authors extract relevant features and partition them into training and test sets,and then use random forest(RF),SVM(support vector machine),classification,and regression tree(CART),gradient tree boost(GTB),decision tree(DT),and minimum distance(MD)algorithms.Through a series of experiments,the authors evaluate the performance of each machine learning method in terms of accuracy,and Kappa coefficient.This work shows that random forest is the best-performing algorithm,with an accuracy of 95.42%and 0.94 Kappa coefficient.The authors discuss the factors of their performance,including data characteristics,accurate selection,and model influencing.展开更多
Using the method of mathematical morphology,this paper fulfills filtration,segmentation and extraction of morphological features of the satellite cloud image.It also gives out the relative algorithms,which is realized...Using the method of mathematical morphology,this paper fulfills filtration,segmentation and extraction of morphological features of the satellite cloud image.It also gives out the relative algorithms,which is realized by parallel C programming based on Transputer networks.It has been successfully used to process the typhoon and the low tornado cloud image.And it will be used in weather forecast.展开更多
Based on the data of satellite cloud image and Doppler radar,the rainstorm process from July 31st,2007 to August 1st,2007 in Liaoning was analyzed.The precipitation in Fushun and Haicheng was more than 100 mm,and 6 h ...Based on the data of satellite cloud image and Doppler radar,the rainstorm process from July 31st,2007 to August 1st,2007 in Liaoning was analyzed.The precipitation in Fushun and Haicheng was more than 100 mm,and 6 h precipitation in Fushun and Dandong was more than 50 mm.Through the analysis of strong precipitation period,the structure of clouds had a little decline from the stage of development to maturity.The gray value and gradient degree around were both larger in the center of heavy precipitation.展开更多
The primary objective of this research is to delineate potential groundwater recharge zones in the Kadaladi taluk of Ramanathapuram,Tamil Nadu,India,using a combination of remote sensing and Geographic Information Sys...The primary objective of this research is to delineate potential groundwater recharge zones in the Kadaladi taluk of Ramanathapuram,Tamil Nadu,India,using a combination of remote sensing and Geographic Information Systems(GIS)with the Analytical Hierarchical Process(AHP).Various factors such as geology,geomorphology,soil,drainage,density,lineament density,slope,rainfall were analyzed at a specific scale.Thematic layers were evaluated for quality and relevance using Saaty's scale,and then inte-grated using the weighted linear combination technique.The weights assigned to each layer and features were standardized using AHP and the Eigen vector technique,resulting in the final groundwater potential zone map.The AHP method was used to normalize the scores following the assignment of weights to each criterion or factor based on Saaty's 9-point scale.Pair-wise matrix analysis was utilized to calculate the geometric mean and normalized weight for various parameters.The groundwater recharge potential zone map was created by mathematically overlaying the normalized weighted layers.Thematic layers indicating major elements influencing groundwater occurrence and recharge were derived from satellite images.2 Results indicate that approximately 21.8 km of the total area exhibits high potential for groundwater recharge.Groundwater recharge is viable in areas with moderate slopes,particularly in the central and southeastern regions.展开更多
River bank erosion is a natural process that occurs when the water flow of a river exceeds the bank’s ability to withstand it. It is a common phenomenon that causes extensive land damage, displacement of people, loss...River bank erosion is a natural process that occurs when the water flow of a river exceeds the bank’s ability to withstand it. It is a common phenomenon that causes extensive land damage, displacement of people, loss of crops, and infrastructure damage. The Gorai River, situated on the right bank of the Ganges, is a significant branch of the river that flows into the Bay of Bengal via the Mathumati and Baleswar rivers. The erosion of the banks of the Gorai River in Kushtia district is not a recent occurrence. Local residents have been dealing with this issue for the past hundred years, and according to the elderly members of the community, the erosion has become more severe activities. Therefore, the main objective of this research is to quantify river bank erosion and accretion and bankline shifting from 2003 to 2022 using multi-temporal Landsat images data with GIS and remote sensing technique. Bank-line migration occurs as a result of the interplay and interconnectedness of various factors such as the degree of river-related processes such as erosion, transportation, and deposition, the amount of water in the river during the high season, the geological and soil makeup, and human intervention in the river. The results show that the highest eroded area was 4.6 square kilometers during the period of 2016 to 2019, while the highest accreted area was 7.12 square kilometers during the period of 2013 to 2016. However, the erosion and accretion values fluctuated from year to year.展开更多
Internal wave propagation carries considerable vertical shear which can lead to turbulence and mixing. Based on the analysis of more than 2 500 synthetic aperture radar (SAR) and optical satellite images, the in- te...Internal wave propagation carries considerable vertical shear which can lead to turbulence and mixing. Based on the analysis of more than 2 500 synthetic aperture radar (SAR) and optical satellite images, the in- ternal wave propagation in the whole South China Sea was investigated systematically. The results show that (1) in the northeastern South China Sea, most internal waves propagate westward from the Luzon Strait and are diffracted by coral reefs near the Dongsha Islands. Some impinge onto the shelf and a few are reflected; (2) in the northwestern South China Sea, most internal waves are generated at the shelf and propagate northwestward or westward to the coast; (3) in the western South China Sea, most internal waves propagate westward to the Vietnamese coast, except a few propagate southward to the deep sea; and (4) in the southern South China Sea, most internal waves propagate southwestward to the coast. Some prop- agate southeastward to the coast of Kalimantan Island, and a few propagate southeastward because of the influence of the Mekon~ River.展开更多
Due to inappropriate planning and management, accelerated urban growth and tremendous loss in land, especially cropland, have become a great challenge for sustainable urban development in China, especially in develope...Due to inappropriate planning and management, accelerated urban growth and tremendous loss in land, especially cropland, have become a great challenge for sustainable urban development in China, especially in developed urban area in the coastal regions; therefore, there is an urgent need to effectively detect and monitor the land use changes and provide accurate and timely information for planning and management. In this study a method combining principal component analysis (PCA) of multisensor satellite images from SPOT (systeme pour l'observation de la terre or earth observation satellite)-5 multispectral (XS) and Landsat-7 enhanced thematic mapper (ETM) panchromatic (PAN) data, and supervised classification was used to detect and analyze the dynamics of land use changes in the city proper of Hangzhou. The overall accuracy of the land use change detection was 90.67% and Kappa index was 0.89. The results indicated that there was a considerable land use change (10.03% of the total area) in the study area from 2001 to 2003, with three major types of land use conversions: from cropland into built-up land, construction site, and water area (fish pond). Changes from orchard land into built-up land were also detected. The method described in this study is feasible and useful for detecting rapid land use change in the urban area.展开更多
As illustrated by the case of Xuyi County, Jinhu County and Hongze County in Jiangsu Province, China, monitoring and forecasting of rice production were carried out by using HJ-1A satellite remote sensing images. The ...As illustrated by the case of Xuyi County, Jinhu County and Hongze County in Jiangsu Province, China, monitoring and forecasting of rice production were carried out by using HJ-1A satellite remote sensing images. The handhold GPS machines were used to measure the geographical position and some other information of these samples such as area shape. The GPS data and the interpretation marks were used to correct H J-1 image, assist human-computer interactive interpretation, and other operations. The test data had been participated in the whole classification process. The accuracy of interpreted information on rice planting area was more than 90% By using the leaf area index from the normalized difference vegetation index inversion, the biomass from the ratio vegetation index inversion, and combined with the rice yield estimation model, the rice yield was estimated. Further, the thematic map of rice production classification was made based on the rice yield data. According to the comparison results between measured and fitted values of yields and areas of sampling sites, the accuracy of the yield estimation was more than 85%. The results suggest that HJ-A/B images could basically meet the demand of rice growth monitoring and yield forecasting, and could be widely applied to rice production monitoring.展开更多
This study assesses the accuracy and the applicability of the Korteweg-de Vries(KdV)and the nonlinear Schr?dinger(NLS)equation solutions to derivation of dynamic parameters of internal solitary waves(ISWs)from satelli...This study assesses the accuracy and the applicability of the Korteweg-de Vries(KdV)and the nonlinear Schr?dinger(NLS)equation solutions to derivation of dynamic parameters of internal solitary waves(ISWs)from satellite images.Visible band images taken by five satellite sensors with spatial resolutions from 5 m to 250 m near the Dongsha Atoll of the northern South China Sea(NSCS)are used as a baseline.From the baseline,the amplitudes of ISWs occurring from July 10 to 13,2017 are estimated by the two approaches and compared with concurrent mooring observations for assessments.Using the ratio of the dimensionless dispersive parameter to the square of dimensionless nonlinear parameter as a criterion,the best appliable ranges of the two approaches are clearly separated.The statistics of total 18 cases indicate that in each 50%of cases,the KdV and the NLS approaches give more accurate estimates of ISW amplitudes.It is found that the relative errors of ISW amplitudes derived from two theoretical approaches are closely associated with the logarithmic bottom slopes.This may be attributed to the nonlinear growth of ISW amplitudes as propagating along a shoaling thermocline or topography.The test results using three consecutive satellite images to retrieve the ISW propagation speeds indicate that the use of multiple satellite images(>2)may improve the accuracy of retrieved phase speeds.Meanwhile,repeated multi-satellite images of ISWs can help to determine the types of ISWs if mooring data are available nearby.展开更多
This study aims to figure out satellite imaging mechanisms for submerged sand ridges in the shallow water region in the case of the flow parallel to the topography corrugation.Solving the disturbance governing equatio...This study aims to figure out satellite imaging mechanisms for submerged sand ridges in the shallow water region in the case of the flow parallel to the topography corrugation.Solving the disturbance governing equations of the shear-flow yields the analytical solutions of the secondary circulation.The solutions indicate that a flow with a parabolic horizontal velocity shear and a sinusoidal vertical velocity shear will induce a pair of vortexes with opposite signs distributed symmetrically on the two sides of central line of a rectangular canal.In the case of the presence of surface Ekman layer with the direction of Ekman current opposite to(coincident with) the mean flow,the two vortexes converge(diverge) at the central line of canal in the upper layer and form a surface current convergent(divergent) zone along the central line of the canal.In the case of the absence of surface Ekman layer,there is no convergent(divergent) zone formed over the sea surface.The theoretical results are applied to interpretations of three convergent cases,one divergent case and statistics of 27 cases of satellite observations in the submerged sand ridge region of the Liaodong Shoal in the Bohai Sea.We found that the long,finger-like,bright patterns on SAR images are corresponding to the locations of the canals(or tidal channels) formed by two adjacent sand ridges rather than the sand ridges themselves.展开更多
Pine wilt disease caused by the pinewood nematode Bursaphelenchus xylophilus has led to the death of a large number of pine trees in China.This destructive disease has the characteristics of bring wide-spread,fast ons...Pine wilt disease caused by the pinewood nematode Bursaphelenchus xylophilus has led to the death of a large number of pine trees in China.This destructive disease has the characteristics of bring wide-spread,fast onset,and long incubation time.Most importantly,in China,the fatality rate in pines is as high as 100%.The key to reducing this mortality is how to quickly find the infected trees.We proposed a method of automatically identifying infected trees by a convolution neural network and bounding box tool.This method rapidly locates the infected area by classifying and recognizing remote sensing images obtained by high resolution earth observation Satellite.The recognition accuracy of the test data set was 99.4%,and the remote sensing image combined with convolution neural network algorithm can identify and determine the distribution of the infected trees.It can provide strong technical support for the prevention and control of pine wilt disease.展开更多
The fractal characteristics of tidal creeks in the Gaizhou Beach are analyzed based on high-resolution images fusionof Landsat TM and ERS2, and then the graphic models and characteristics of converse information tree ...The fractal characteristics of tidal creeks in the Gaizhou Beach are analyzed based on high-resolution images fusionof Landsat TM and ERS2, and then the graphic models and characteristics of converse information tree of tidalcreeks in the Gaizhou Beach are established. A calculation model is established based on the above results, and at thesame time, quantitative calculation of the evolution characteristics and the diversity between the northern and thesouthern parts of the Gaizhou Beach is carried out. By the supervised classification of these images, distribution andareas of high tidal flats, middle tidal flats and low tidal flats in the Gaizhou Beach are studied quantitatively, and imagecharactistics of seashell habitats in the Gaizhou Beach and the correlation between mudflat distribution and seashellhabitats are studied. At last, the engineering problems in the Gaizhou Beach are discussed.展开更多
Forest logging in the Congo Basin has led to forest fragmentation due to logging infrastructures and felling gaps. In the same vein, forest concessions in the Congo Basin have increasing interest in the REDD+ mechani...Forest logging in the Congo Basin has led to forest fragmentation due to logging infrastructures and felling gaps. In the same vein, forest concessions in the Congo Basin have increasing interest in the REDD+ mechanism. However, there is little information or field data on carbon emissions from forest degradation caused by logging. To help fill this gap, Landsat 7 and 8 and SPOT 4 images of the East Region of Cameroon were processed and combined with field measurements (measurement of forest roads widths, felling gaps and log yards) to assess all disturbed areas. Also, measurements of different types of forest infrastructures helped to highlight emission factors. Forest contributes to 5.18 % of the degradation of the annual allowable cut (AAC) (84.53 ha) corresponding to 4.09 % of forest carbon stock (6.92 t ha^-1). Felling gaps constitute the primary source of degradation, represented an estimated area of 32.41 ha (2 % of the cutting area) far ahead of primary roads (18.44ha) and skid trails (16.36 ha). Assessment of the impact of degradation under the canopy requires the use of high resolution satellite images and field surveys.展开更多
文摘Industrial activities, through the human-induced release of Green House Gas (GHG) emissions, have beenidentified as the primary cause of global warming. Accurate and quantitative monitoring of these emissions isessential for a comprehensive understanding of their impact on the Earth’s climate and for effectively enforcingemission regulations at a large scale. This work examines the feasibility of detecting and quantifying industrialsmoke plumes using freely accessible geo-satellite imagery. The existing systemhas so many lagging factors such aslimitations in accuracy, robustness, and efficiency and these factors hinder the effectiveness in supporting timelyresponse to industrial fires. In this work, the utilization of grayscale images is done instead of traditional colorimages for smoke plume detection. The dataset was trained through a ResNet-50 model for classification and aU-Net model for segmentation. The dataset consists of images gathered by European Space Agency’s Sentinel-2 satellite constellation from a selection of industrial sites. The acquired images predominantly capture scenesof industrial locations, some of which exhibit active smoke plume emissions. The performance of the abovementionedtechniques and models is represented by their accuracy and IOU (Intersection-over-Union) metric.The images are first trained on the basic RGB images where their respective classification using the ResNet-50model results in an accuracy of 94.4% and segmentation using the U-Net Model with an IOU metric of 0.5 andaccuracy of 94% which leads to the detection of exact patches where the smoke plume has occurred. This work hastrained the classification model on grayscale images achieving a good increase in accuracy of 96.4%.
文摘The isotherm is an important feature of infrared satellite cloud images (ISCI), which can directly reveal substantial information of cloud systems. The isotherm extraction of ISCI can remove the redundant information and therefore helps to compress the information of ISCI. In this paper, an isotherm extraction method is presented. The main aggregate of clouds can be segmented based on mathematical morphology. T algorithm and IP algorithm are then applied to extract the isotherms from the main aggregate of clouds. A concrete example for the extraction of isotherm based on IBM SP2 is described. The result shows that this is a high efficient algorithm. It can be used in feature extractions of infrared images for weather forecasts.
基金funded by Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia,under grant No.(PNURSP2022R161).
文摘The analysis of remote sensing image areas is needed for climate detec-tion and management,especially for monitoringflood disasters in critical environ-ments and applications.Satellites are mostly used to detect disasters on Earth,and they have advantages in capturing Earth images.Using the control technique,Earth images can be used to obtain detailed terrain information.Since the acquisi-tion of satellite and aerial imagery,this system has been able to detectfloods,and with increasing convenience,flood detection has become more desirable in the last few years.In this paper,a Big Data Set-based Progressive Image Classification Algorithm(PICA)system is introduced to implement an image processing tech-nique,detect disasters,and determine results with the help of the PICA,which allows disaster analysis to be extracted more effectively.The PICA is essential to overcoming strong shadows,for proper access to disaster characteristics to false positives by operators,and to false predictions that affect the impact of the disas-ter.The PICA creates tailoring and adjustments obtained from satellite images before training and post-disaster aerial image data patches.Two types of proposed PICA systems detect disasters faster and more accurately(95.6%).
文摘This survey paper aims to show methods to analyze and classify field satellite images using deep learning and machine learning algorithms.Users of deep learning-based Convolutional Neural Network(CNN)technology to harvest fields from satellite images or generate zones of interest were among the planned application scenarios(ROI).Using machine learning,the satellite image is placed on the input image,segmented,and then tagged.In contem-porary categorization,field size ratio,Local Binary Pattern(LBP)histograms,and color data are taken into account.Field satellite image localization has several practical applications,including pest management,scene analysis,and field tracking.The relationship between satellite images in a specific area,or contextual information,is essential to comprehending the field in its whole.
文摘Fusing satellite(remote sensing)images is an interesting topic in processing satellite images.The result image is achieved through fusing information from spectral and panchromatic images for sharpening.In this paper,a new algorithm based on based the Artificial bee colony(ABC)algorithm with peak signalto-noise ratio(PSNR)index optimization is proposed to fusing remote sensing images in this paper.Firstly,Wavelet transform is used to split the input images into components over the high and low frequency domains.Then,two fusing rules are used for obtaining the fused images.The first rule is“the high frequency components are fused by using the average values”.The second rule is“the low frequency components are fused by using the combining rule with parameter”.The parameter for fusing the low frequency components is defined by using ABC algorithm,an algorithm based on PSNR index optimization.The experimental results on different input images show that the proposed algorithm is better than some recent methods.
文摘The growing demand for current and precise geographic information that pertains to urban areas has given rise to a significant interest in digital surface models that exhibit a high level of detail. Traditional methods for creating digital surface models are insufficient to reflect the details of earth’s features. These models only represent three-dimensional objects in a single texture and fail to offer a realistic depiction of the real world. Furthermore, the need for current and precise geographic information regarding urban areas has been increasing significantly. This study proposes a new technique to address this problem, which involves integrating remote sensing, Geographic Information Systems (GIS), and Architecture Environment software environments to generate a detailed three-dimensional model. The processing of this study starts with: 1) Downloading high-resolution satellite imagery; 2) Collecting ground truth datasets from fieldwork; 3) Imaging nose removing; 4) Generating a Two-dimensional Model to create a digital surface model in GIS using the extracted building outlines; 5) Converting the model into multi-patch layers to construct a 3D model for each object separately. The results show that the 3D model obtained through this method is highly detailed and effective for various applications, including environmental studies, urban development, expansion planning, and shape understanding tasks.
文摘The measurement of solar irradiation is still a necessary basis for planning the installation of photovoltaic parks and concentrating solar power systems. The meteorological stations for the measurement of the solar flux at any point of the earth’s surface are still insufficient worldwide;moreover, these measurements on the ground are expensive, and rare. To overcome this shortcoming, the exploitation of images from the European meteorological satellites of the second generation MSG is a reliable solution to estimate the global horizontal irradiance GHI on the ground with a good spatial and temporal coverage. Since 2004, the new generation MSG satellites provide images of Africa and Europe every 15 minutes with a spatial resolution of about 1 km × 1 km at the sub-satellite point. The objective of this work was to apply the Brazil-SR method to evaluate the global horizontal GHI irradiance for the entire Moroccan national territory from the European Meteosat Second Generation MSG satellite images. This bibliographic review also exposed the standard model of calculation of GHI in clear sky by exploiting the terrestrial meteorological measurements.
文摘Satellite image classification is crucial in various applications such as urban planning,environmental monitoring,and land use analysis.In this study,the authors present a comparative analysis of different supervised and unsupervised learning methods for satellite image classification,focusing on a case study in Casablanca using Landsat 8 imagery.This research aims to identify the most effective machine-learning approach for accurately classifying land cover in an urban environment.The methodology used consists of the pre-processing of Landsat imagery data from Casablanca city,the authors extract relevant features and partition them into training and test sets,and then use random forest(RF),SVM(support vector machine),classification,and regression tree(CART),gradient tree boost(GTB),decision tree(DT),and minimum distance(MD)algorithms.Through a series of experiments,the authors evaluate the performance of each machine learning method in terms of accuracy,and Kappa coefficient.This work shows that random forest is the best-performing algorithm,with an accuracy of 95.42%and 0.94 Kappa coefficient.The authors discuss the factors of their performance,including data characteristics,accurate selection,and model influencing.
文摘Using the method of mathematical morphology,this paper fulfills filtration,segmentation and extraction of morphological features of the satellite cloud image.It also gives out the relative algorithms,which is realized by parallel C programming based on Transputer networks.It has been successfully used to process the typhoon and the low tornado cloud image.And it will be used in weather forecast.
文摘Based on the data of satellite cloud image and Doppler radar,the rainstorm process from July 31st,2007 to August 1st,2007 in Liaoning was analyzed.The precipitation in Fushun and Haicheng was more than 100 mm,and 6 h precipitation in Fushun and Dandong was more than 50 mm.Through the analysis of strong precipitation period,the structure of clouds had a little decline from the stage of development to maturity.The gray value and gradient degree around were both larger in the center of heavy precipitation.
文摘The primary objective of this research is to delineate potential groundwater recharge zones in the Kadaladi taluk of Ramanathapuram,Tamil Nadu,India,using a combination of remote sensing and Geographic Information Systems(GIS)with the Analytical Hierarchical Process(AHP).Various factors such as geology,geomorphology,soil,drainage,density,lineament density,slope,rainfall were analyzed at a specific scale.Thematic layers were evaluated for quality and relevance using Saaty's scale,and then inte-grated using the weighted linear combination technique.The weights assigned to each layer and features were standardized using AHP and the Eigen vector technique,resulting in the final groundwater potential zone map.The AHP method was used to normalize the scores following the assignment of weights to each criterion or factor based on Saaty's 9-point scale.Pair-wise matrix analysis was utilized to calculate the geometric mean and normalized weight for various parameters.The groundwater recharge potential zone map was created by mathematically overlaying the normalized weighted layers.Thematic layers indicating major elements influencing groundwater occurrence and recharge were derived from satellite images.2 Results indicate that approximately 21.8 km of the total area exhibits high potential for groundwater recharge.Groundwater recharge is viable in areas with moderate slopes,particularly in the central and southeastern regions.
文摘River bank erosion is a natural process that occurs when the water flow of a river exceeds the bank’s ability to withstand it. It is a common phenomenon that causes extensive land damage, displacement of people, loss of crops, and infrastructure damage. The Gorai River, situated on the right bank of the Ganges, is a significant branch of the river that flows into the Bay of Bengal via the Mathumati and Baleswar rivers. The erosion of the banks of the Gorai River in Kushtia district is not a recent occurrence. Local residents have been dealing with this issue for the past hundred years, and according to the elderly members of the community, the erosion has become more severe activities. Therefore, the main objective of this research is to quantify river bank erosion and accretion and bankline shifting from 2003 to 2022 using multi-temporal Landsat images data with GIS and remote sensing technique. Bank-line migration occurs as a result of the interplay and interconnectedness of various factors such as the degree of river-related processes such as erosion, transportation, and deposition, the amount of water in the river during the high season, the geological and soil makeup, and human intervention in the river. The results show that the highest eroded area was 4.6 square kilometers during the period of 2016 to 2019, while the highest accreted area was 7.12 square kilometers during the period of 2013 to 2016. However, the erosion and accretion values fluctuated from year to year.
基金The Chinese Offshore Investigation and Assessment under contract No.908-01-BC04the European Space Agency and the Ministry of Science and Technology of the People’s Republic of China Dragon 2 Cooperation Programme under contract No.5316the scientific research fund of the Second Institute of Oceanography,State Oceanic Administration under contract No.JG1206
文摘Internal wave propagation carries considerable vertical shear which can lead to turbulence and mixing. Based on the analysis of more than 2 500 synthetic aperture radar (SAR) and optical satellite images, the in- ternal wave propagation in the whole South China Sea was investigated systematically. The results show that (1) in the northeastern South China Sea, most internal waves propagate westward from the Luzon Strait and are diffracted by coral reefs near the Dongsha Islands. Some impinge onto the shelf and a few are reflected; (2) in the northwestern South China Sea, most internal waves are generated at the shelf and propagate northwestward or westward to the coast; (3) in the western South China Sea, most internal waves propagate westward to the Vietnamese coast, except a few propagate southward to the deep sea; and (4) in the southern South China Sea, most internal waves propagate southwestward to the coast. Some prop- agate southeastward to the coast of Kalimantan Island, and a few propagate southeastward because of the influence of the Mekon~ River.
基金supported by the National Natural Science Foundation of China (NSFC) (No.30571112).
文摘Due to inappropriate planning and management, accelerated urban growth and tremendous loss in land, especially cropland, have become a great challenge for sustainable urban development in China, especially in developed urban area in the coastal regions; therefore, there is an urgent need to effectively detect and monitor the land use changes and provide accurate and timely information for planning and management. In this study a method combining principal component analysis (PCA) of multisensor satellite images from SPOT (systeme pour l'observation de la terre or earth observation satellite)-5 multispectral (XS) and Landsat-7 enhanced thematic mapper (ETM) panchromatic (PAN) data, and supervised classification was used to detect and analyze the dynamics of land use changes in the city proper of Hangzhou. The overall accuracy of the land use change detection was 90.67% and Kappa index was 0.89. The results indicated that there was a considerable land use change (10.03% of the total area) in the study area from 2001 to 2003, with three major types of land use conversions: from cropland into built-up land, construction site, and water area (fish pond). Changes from orchard land into built-up land were also detected. The method described in this study is feasible and useful for detecting rapid land use change in the urban area.
文摘As illustrated by the case of Xuyi County, Jinhu County and Hongze County in Jiangsu Province, China, monitoring and forecasting of rice production were carried out by using HJ-1A satellite remote sensing images. The handhold GPS machines were used to measure the geographical position and some other information of these samples such as area shape. The GPS data and the interpretation marks were used to correct H J-1 image, assist human-computer interactive interpretation, and other operations. The test data had been participated in the whole classification process. The accuracy of interpreted information on rice planting area was more than 90% By using the leaf area index from the normalized difference vegetation index inversion, the biomass from the ratio vegetation index inversion, and combined with the rice yield estimation model, the rice yield was estimated. Further, the thematic map of rice production classification was made based on the rice yield data. According to the comparison results between measured and fitted values of yields and areas of sampling sites, the accuracy of the yield estimation was more than 85%. The results suggest that HJ-A/B images could basically meet the demand of rice growth monitoring and yield forecasting, and could be widely applied to rice production monitoring.
基金The National Key Project of Research and Development Plan of China under contract No.2016YFC1401905the National Natural Science Foundation of China under contract No.41976163+1 种基金the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)under contract No.GML2019ZD0602the Guangdong Special Fund Program for Marine Economy Development under contract No.GDNRC[2020]050。
文摘This study assesses the accuracy and the applicability of the Korteweg-de Vries(KdV)and the nonlinear Schr?dinger(NLS)equation solutions to derivation of dynamic parameters of internal solitary waves(ISWs)from satellite images.Visible band images taken by five satellite sensors with spatial resolutions from 5 m to 250 m near the Dongsha Atoll of the northern South China Sea(NSCS)are used as a baseline.From the baseline,the amplitudes of ISWs occurring from July 10 to 13,2017 are estimated by the two approaches and compared with concurrent mooring observations for assessments.Using the ratio of the dimensionless dispersive parameter to the square of dimensionless nonlinear parameter as a criterion,the best appliable ranges of the two approaches are clearly separated.The statistics of total 18 cases indicate that in each 50%of cases,the KdV and the NLS approaches give more accurate estimates of ISW amplitudes.It is found that the relative errors of ISW amplitudes derived from two theoretical approaches are closely associated with the logarithmic bottom slopes.This may be attributed to the nonlinear growth of ISW amplitudes as propagating along a shoaling thermocline or topography.The test results using three consecutive satellite images to retrieve the ISW propagation speeds indicate that the use of multiple satellite images(>2)may improve the accuracy of retrieved phase speeds.Meanwhile,repeated multi-satellite images of ISWs can help to determine the types of ISWs if mooring data are available nearby.
基金supported by Academician Foundation of China (for Yuan and Zheng)Shanghai Science and Technology Committee Program - Special for EXPO under Grant No.10DZ0581600 and Grant SHUES2011A07 from Shanghai Institute of Urban Ecology and Sustainability(for Zhao)+1 种基金partially supported by US National Sci-ence Foundation Award 0962107 (for Zheng and Liu)Award 1061998 (for Zheng)
文摘This study aims to figure out satellite imaging mechanisms for submerged sand ridges in the shallow water region in the case of the flow parallel to the topography corrugation.Solving the disturbance governing equations of the shear-flow yields the analytical solutions of the secondary circulation.The solutions indicate that a flow with a parabolic horizontal velocity shear and a sinusoidal vertical velocity shear will induce a pair of vortexes with opposite signs distributed symmetrically on the two sides of central line of a rectangular canal.In the case of the presence of surface Ekman layer with the direction of Ekman current opposite to(coincident with) the mean flow,the two vortexes converge(diverge) at the central line of canal in the upper layer and form a surface current convergent(divergent) zone along the central line of the canal.In the case of the absence of surface Ekman layer,there is no convergent(divergent) zone formed over the sea surface.The theoretical results are applied to interpretations of three convergent cases,one divergent case and statistics of 27 cases of satellite observations in the submerged sand ridge region of the Liaodong Shoal in the Bohai Sea.We found that the long,finger-like,bright patterns on SAR images are corresponding to the locations of the canals(or tidal channels) formed by two adjacent sand ridges rather than the sand ridges themselves.
基金supported by the National Science and Technology Major Project of China’s High Resolution Earth Observation System(21-Y30B02-9001-19/22)the Heilongjiang Provincial Natural Science Foundation of China(YQ2020C018)。
文摘Pine wilt disease caused by the pinewood nematode Bursaphelenchus xylophilus has led to the death of a large number of pine trees in China.This destructive disease has the characteristics of bring wide-spread,fast onset,and long incubation time.Most importantly,in China,the fatality rate in pines is as high as 100%.The key to reducing this mortality is how to quickly find the infected trees.We proposed a method of automatically identifying infected trees by a convolution neural network and bounding box tool.This method rapidly locates the infected area by classifying and recognizing remote sensing images obtained by high resolution earth observation Satellite.The recognition accuracy of the test data set was 99.4%,and the remote sensing image combined with convolution neural network algorithm can identify and determine the distribution of the infected trees.It can provide strong technical support for the prevention and control of pine wilt disease.
基金This study was supported by the Project of“863”Marine Monitor of Hi-Tech Research and Development Program of China under contract No.2003AA604040.
文摘The fractal characteristics of tidal creeks in the Gaizhou Beach are analyzed based on high-resolution images fusionof Landsat TM and ERS2, and then the graphic models and characteristics of converse information tree of tidalcreeks in the Gaizhou Beach are established. A calculation model is established based on the above results, and at thesame time, quantitative calculation of the evolution characteristics and the diversity between the northern and thesouthern parts of the Gaizhou Beach is carried out. By the supervised classification of these images, distribution andareas of high tidal flats, middle tidal flats and low tidal flats in the Gaizhou Beach are studied quantitatively, and imagecharactistics of seashell habitats in the Gaizhou Beach and the correlation between mudflat distribution and seashellhabitats are studied. At last, the engineering problems in the Gaizhou Beach are discussed.
基金financially supported by FORAFAMA and COBAM project
文摘Forest logging in the Congo Basin has led to forest fragmentation due to logging infrastructures and felling gaps. In the same vein, forest concessions in the Congo Basin have increasing interest in the REDD+ mechanism. However, there is little information or field data on carbon emissions from forest degradation caused by logging. To help fill this gap, Landsat 7 and 8 and SPOT 4 images of the East Region of Cameroon were processed and combined with field measurements (measurement of forest roads widths, felling gaps and log yards) to assess all disturbed areas. Also, measurements of different types of forest infrastructures helped to highlight emission factors. Forest contributes to 5.18 % of the degradation of the annual allowable cut (AAC) (84.53 ha) corresponding to 4.09 % of forest carbon stock (6.92 t ha^-1). Felling gaps constitute the primary source of degradation, represented an estimated area of 32.41 ha (2 % of the cutting area) far ahead of primary roads (18.44ha) and skid trails (16.36 ha). Assessment of the impact of degradation under the canopy requires the use of high resolution satellite images and field surveys.