In this paper,the satellite attitude control system subject to parametric perturbations,external disturbances,time-varying input delays,actuator faults and saturation is studied.In order to make the controller archite...In this paper,the satellite attitude control system subject to parametric perturbations,external disturbances,time-varying input delays,actuator faults and saturation is studied.In order to make the controller architecture simple and practical,the closed-loop system is transformed into a disturbance-free nominal system and an equivalent disturbance firstly.The equivalent disturbance represents all above uncertainties and actuator failures of the original system.Then a robust controller is proposed in a simple composition consisting of a nominal controller and a robust compensator.The nominal controller is designed for the transformed nominal system.The robust compensator is developed from a second-order filter to restrict the influence of the equivalent disturbance.Stability analysis indicates that both attitude tracking errors and compensator states can converge into the given neighborhood of the origin in finite time.To verify the effectiveness of the proposed control law,numerical simulations are carried out in different cases.Presented results demonstrate that the high-precision attitude tracking control can be achieved by the proposed fault-tolerant control law.Furthermore,multiple system performances including the control accuracy and energy consumption index are fully discussed under a series of compensator parameters.展开更多
In this paper,a combined robust fault detection and isolation scheme is studied for satellite system subject to actuator faults,external disturbances,and parametric uncertainties.The proposed methodology incorporates ...In this paper,a combined robust fault detection and isolation scheme is studied for satellite system subject to actuator faults,external disturbances,and parametric uncertainties.The proposed methodology incorporates a residual generation module,including a bank of filters,into an intelligent residual evaluation module.First,residual filters are designed based on an improved nonlinear differential algebraic approach so that they are not affected by external disturbances.The residual evaluation module is developed based on the suggested series and parallel forms.Further,a new ensemble classification scheme defined as blended learning integrates heterogeneous classifiers to enhance the performance.A wide range of simulations is carried out in a high-fidelity satellite simulator subject to the constant and time-varying actuator faults in the presence of disturbances,manoeuvres,uncertainties,and noises.The obtained results demonstrate the effectiveness of the proposed robust fault detection and isolation method compared to the traditional nonlinear differential algebraic approach.展开更多
This paper investigates the problem of two-stage extended Kalman filter (TSEKF)-based fault estimation for reaction flywheels in satellite attitude control systems (ACSs). Firstly, based on the separate-bias princ...This paper investigates the problem of two-stage extended Kalman filter (TSEKF)-based fault estimation for reaction flywheels in satellite attitude control systems (ACSs). Firstly, based on the separate-bias principle, a satellite ACSs with actuator fault is transformed into an augmented nonlinear discrete stochastic model; then, a novel TSEKF is suggested such that it can simultane- ously estimate satellite attitude information and actuator faults no matter they are additive or mul- tiplicative; finally, the proposed approach is respectively applied to estimating bias faults and loss of effectiveness for reaction flywheels in satellite ACSs, and simulation results demonstrate the effec- tiveness of the proposed fault estimation approach.展开更多
基金supported by the APSCO(Asia-Pacific Space Cooperation Organization)Student Small Satellite(SSS)Project(Microsatellite SSS-1,No.APSCO/ET&DM/SSS/IMP_C_001)。
文摘In this paper,the satellite attitude control system subject to parametric perturbations,external disturbances,time-varying input delays,actuator faults and saturation is studied.In order to make the controller architecture simple and practical,the closed-loop system is transformed into a disturbance-free nominal system and an equivalent disturbance firstly.The equivalent disturbance represents all above uncertainties and actuator failures of the original system.Then a robust controller is proposed in a simple composition consisting of a nominal controller and a robust compensator.The nominal controller is designed for the transformed nominal system.The robust compensator is developed from a second-order filter to restrict the influence of the equivalent disturbance.Stability analysis indicates that both attitude tracking errors and compensator states can converge into the given neighborhood of the origin in finite time.To verify the effectiveness of the proposed control law,numerical simulations are carried out in different cases.Presented results demonstrate that the high-precision attitude tracking control can be achieved by the proposed fault-tolerant control law.Furthermore,multiple system performances including the control accuracy and energy consumption index are fully discussed under a series of compensator parameters.
文摘In this paper,a combined robust fault detection and isolation scheme is studied for satellite system subject to actuator faults,external disturbances,and parametric uncertainties.The proposed methodology incorporates a residual generation module,including a bank of filters,into an intelligent residual evaluation module.First,residual filters are designed based on an improved nonlinear differential algebraic approach so that they are not affected by external disturbances.The residual evaluation module is developed based on the suggested series and parallel forms.Further,a new ensemble classification scheme defined as blended learning integrates heterogeneous classifiers to enhance the performance.A wide range of simulations is carried out in a high-fidelity satellite simulator subject to the constant and time-varying actuator faults in the presence of disturbances,manoeuvres,uncertainties,and noises.The obtained results demonstrate the effectiveness of the proposed robust fault detection and isolation method compared to the traditional nonlinear differential algebraic approach.
文摘This paper investigates the problem of two-stage extended Kalman filter (TSEKF)-based fault estimation for reaction flywheels in satellite attitude control systems (ACSs). Firstly, based on the separate-bias principle, a satellite ACSs with actuator fault is transformed into an augmented nonlinear discrete stochastic model; then, a novel TSEKF is suggested such that it can simultane- ously estimate satellite attitude information and actuator faults no matter they are additive or mul- tiplicative; finally, the proposed approach is respectively applied to estimating bias faults and loss of effectiveness for reaction flywheels in satellite ACSs, and simulation results demonstrate the effec- tiveness of the proposed fault estimation approach.