In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a gene...In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.展开更多
Based on the theory of porous media, a general Gurtin variational principle for the initial boundary value problem of dynamical response of fluid-saturated elastic porous media is developed by assuming infinitesimal d...Based on the theory of porous media, a general Gurtin variational principle for the initial boundary value problem of dynamical response of fluid-saturated elastic porous media is developed by assuming infinitesimal deformation and incompressible constituents of the solid and fluid phase. The finite element formulation based on this variational principle is also derived. As the functional of the variational principle is a spatial integral of the convolution formulation, the general finite element discretization in space results in symmetrical differential-integral equations in the time domain. In some situations, the differential-integral equations can be reduced to symmetrical differential equations and, as a numerical example, it is employed to analyze the reflection of one-dimensional longitudinal wave in a fluid-saturated porous solid. The numerical results can provide further understanding of the wave propagation in porous media.展开更多
The Blot's wave equations of transversely isotropic saturated poroelastic media excited hy non-axisymmetrical harmonic source were solved by means of Fourier expansion and Hankel transform. Then the components of ...The Blot's wave equations of transversely isotropic saturated poroelastic media excited hy non-axisymmetrical harmonic source were solved by means of Fourier expansion and Hankel transform. Then the components of total stress in porous media are expressed with the solutions of Biot's wave equations. The method of research on non-axisymmetrical dynamic response of saturated porous media is discussed, and a numerical result is presented.展开更多
Heat source function method is adopted in the present paper to derive elementary solutions of coupled thermo-hydro-mechanical consolidation for saturated porous media under conjunct actions of instantaneous point heat...Heat source function method is adopted in the present paper to derive elementary solutions of coupled thermo-hydro-mechanical consolidation for saturated porous media under conjunct actions of instantaneous point heat source, instantaneous point fluid source and constant volume force. By using the so-called fictitious heat source method and images method, the solutions of a semi-infinite saturated porous medium subjected to a local heat source with time-varied intensity on its free surface are developed from elementary solutions. The numerical integral methods for calculating the unsteady temperature, pore pressure and displacement fields are given. The thermomechanical response are analyzed for the case of a circular planar heat source. Besides, the thermal consolidation characteristics of a saturated porous medium subjected to a harmonic thermal loading are also given, and the fluctuation processes of the field variables located below the center of heat source are analyzed.展开更多
This paper is mainly concerned with the dynamic response of an elastic foundation of finite height bounded to the surface of a saturated half-space. The foundation is subjected to time-harmonic vertical loadings. Firs...This paper is mainly concerned with the dynamic response of an elastic foundation of finite height bounded to the surface of a saturated half-space. The foundation is subjected to time-harmonic vertical loadings. First, the transform solutions for the governing equations of the saturated media are obtained. Then, based on the assumption that the contact between the foundation and the half-space is fully relaxed and the halfspace is completely pervious or impervious, this dynamic mixed boundary-value problem can lead to dual integral equations, which can be further reduced to the Predhohn integral equations of the second kind and solved by numerical procedures. In the numerical extortples, the dynamic colnpliances, displacements and pore pressure are developed for a wide range of frequencies and material/geometrical properties of the saturated soil-foundation system. In most of the cases, the dynamic behavior of an elastic foundation resting on the saturated media significantly differs from that of a rigid disc on the saturated half-space. The solutions obtained can be used to study a variety of wave propagation problems and dynamic soil-structure interactions.展开更多
Based on the nonlinear Schr o¨dinger equation, the interactions of the two Airy–Gaussian components in the incidence are analyzed in saturable media, under the circumstances of the same amplitude and different a...Based on the nonlinear Schr o¨dinger equation, the interactions of the two Airy–Gaussian components in the incidence are analyzed in saturable media, under the circumstances of the same amplitude and different amplitudes, respectively. It is found that the interaction can be both attractive and repulsive depending on the relative phase. The smaller the interval between two Airy–Gaussian components in the incidence is, the stronger the intensity of the interaction. However, with the equal amplitude, the symmetry is shown and the change of quasi-breathers is opposite in the in-phase case and out-of-phase case. As the distribution factor is increased, the phenomena of the quasi-breather and the self-accelerating of the two Airy–Gaussian components are weakened. When the amplitude is not equal, the image does not have symmetry. The obvious phenomenon of the interaction always arises on the side of larger input power in the incidence. The maximum intensity image is also simulated. Many of the characteristics which are contained within other images can also be concluded in this figure.展开更多
Based on the three-dimensional Gurtin-type variational principle of the incompressible saturated porous media, a one-dimensional mathematical model for dynamics of the saturated poroelastic Timoshenko cantilever beam ...Based on the three-dimensional Gurtin-type variational principle of the incompressible saturated porous media, a one-dimensional mathematical model for dynamics of the saturated poroelastic Timoshenko cantilever beam is established with two assumptions, i.e., the deformation satisfies the classical single phase Timoshenko beam and the movement of the pore fluid is only in the axial direction of the saturated poroelastic beam. Under some special cases, this mathematical model can be degenerated into the Euler-Bernoulli model, the Rayleigh model, and the shear model of the saturated poroelastic beam, respectively. The dynamic and quasi-static behaviors of a saturated poroelastic Timoshenko cantilever beam with an impermeable fixed end and a permeable free end subjected to a step load at its free end are analyzed by the Laplace transform. The variations of the deflections at the beam free end against time are shown in figures. The influences of the interaction coefficient between the pore fluid and the solid skeleton as well as the slenderness ratio of the beam on the dynamic/quasi-static performances of the beam are examined. It is shown that the quasi-static deflections of the saturated poroelastic beam possess a creep behavior similar to that of viscoelastic beams. In dynamic responses, with the increase of the slenderness ratio, the vibration periods and amplitudes of the deflections at the free end increase, and the time needed for deflections approaching to their stationary values also increases. Moreover, with the increase of the interaction coefficient, the vibrations of the beam deflections decay more strongly, and, eventually, the deflections of the saturated poroelastic beam converge to the static deflections of the classic single phase Timoshenko beam.展开更多
In this study, a novel approach to incorporate the pore water pressure in the discrete element method (DEM) to comprehensively model saturated granular media was developed. A numerical model was constructed based on...In this study, a novel approach to incorporate the pore water pressure in the discrete element method (DEM) to comprehensively model saturated granular media was developed. A numerical model was constructed based on the DEM by implanting additional routines in the basic DEM code; pore water pressure calculations were used with a two-dimensional (2D) model to simulate the undrained behavior of satu- rated granular media. This model coupled the interaction of solid particles and the pore fluid in saturated granular media. Finally, several 2D undrained shear tests were simulated. The test results showed that the model could predict the response of the saturated granular soil to shear loading. The effect of initial compaction was investigated. Biaxial tests on dense and loose specimens were conducted, and the effect of the initial density on the change in shear strength and the volume change of the system was inves- tigated. The overall behavior of loose and dense specimens was phenomenologically similar to the real granular material. Constant volume tests were simulated, and the results were compared to those from the coupled model. Induced anisotropy was micromechanically investigated by studying the contact force orientation. The change in anisotropy depended on the modeling scheme. However, the overall responses of the media obtained usinz the couoled and constant volume methods were similar.展开更多
Abstract An analytical solution to the three-dimen-sional scattering and diffraction of plane SV-waves by a saturated hemispherical alluvial valley in elastic half-space is obtained by using Fourier-Bessel series expa...Abstract An analytical solution to the three-dimen-sional scattering and diffraction of plane SV-waves by a saturated hemispherical alluvial valley in elastic half-space is obtained by using Fourier-Bessel series expan-sion technique. The hemispherical alluvial valley with saturated soil deposits is simulated with Biot's dynamic theory for saturated porous media. The following conclusions based on numerical results can be drawn: (1) there are a significant differences in the seismic response simulation between the previous single-phase models and the present two-phase model; (2) the nor-malized displacements on the free surface of the alluvial valley depend mainly on the incident wave angles, the dimensionless frequency of the incident SV waves and the porosity of sediments; (3) with the increase of the incident angle, the displacement distributions become more complicated; and the displacements on the free surface of the alluvial valley increase as the porosity of sediments increases.展开更多
The MTF is extended to case of attenuating incident wave by introducing an attenuation coefficient. The reflection coefficients of this modified MTF and MTF are evaluated and compared when an attenuating wave impinges...The MTF is extended to case of attenuating incident wave by introducing an attenuation coefficient. The reflection coefficients of this modified MTF and MTF are evaluated and compared when an attenuating wave impinges on the boundary, and the results demonstrate that MTF can be used to absorb slightly attenuating waves and the modified MTF is more capable of absorbing heavily attenuating waves than MTF. The accuracy of modified MTF is also tested by numerical examples of fluid saturated porous media.展开更多
Considering the thermal contact resistance and elastic wave impedance at the interface,in this paper we theoretically investigate the thermo-hydro-mechanical(THM)coupling dynamic response of bilayered saturated porous...Considering the thermal contact resistance and elastic wave impedance at the interface,in this paper we theoretically investigate the thermo-hydro-mechanical(THM)coupling dynamic response of bilayered saturated porous media.Fractional thermoelastic theory is applied to porous media with imperfect thermal and mechanical contact.The analytical solutions of the dynamic response of the bilayered saturated porous media are obtained in frequency domain.Furthermore,the effects of fractional derivative parameters and thermal contact resistance on the dynamic response of such media are systematically discussed.Results show that the effects of fractional derivative parameters on the dynamic response of bilayered saturated porous media are related to the thermal contact resistance at the interface.With increasing thermal contact resistance,the displacement,pore water pressure,and stress decrease gradually.展开更多
We investigate the existence and stability of surface defect gap solitons at an interface between a defect in a two-dimensional optical lattice and a uniform saturable Kerr nonlinear medium. The surface defect embedde...We investigate the existence and stability of surface defect gap solitons at an interface between a defect in a two-dimensional optical lattice and a uniform saturable Kerr nonlinear medium. The surface defect embedded in the two-dimensional optical lattice gives rise to some unique properties. It is interestingly found that for the negative defect, stable surface defect gap solitons can exist both in the semi-infinite gap and in the first gap. The deeper the negative defect, the narrower the stable region in the semi-infinite gap will be. For a positive defect, the surface defect gap solitons exist only in the semi-infinite gap and the stable region localizes in a low power region.展开更多
In this paper an elliptic-parabolic coupled system arising from the fluid-solute-heat flowthrough a saturated porous medium is considerd.The uniqueness and the existence of classicalsolutions are proved.The asymptotic...In this paper an elliptic-parabolic coupled system arising from the fluid-solute-heat flowthrough a saturated porous medium is considerd.The uniqueness and the existence of classicalsolutions are proved.The asymptotic behavior of solutions for large time is shown,too.展开更多
In this study,fully coupled thermo-poroelastic saturated media are simulated by a grid/cell adaptive central high resolution scheme.The central method corresponds to the second order Kurganov-Tadmor(KT)scheme working ...In this study,fully coupled thermo-poroelastic saturated media are simulated by a grid/cell adaptive central high resolution scheme.The central method corresponds to the second order Kurganov-Tadmor(KT)scheme working on adapted cells with the total variation diminishing(TVD)stability condition.The coupled equations include motion,fluid flow,heat flow,continuity condition,and a constitutive equation.The grid/cell adaptation is performed by the interpolating wavelet transform in the multiresolution framework to capture fine scale responses and to obtain a computationally effective solver.With respect to the use of central schemes,the coupled equations should be re-expressed as a system of coupled first-order hyperbolic-parabolic partial differential equations(PDEs)with possible source(load)terms.The system is initially derived in the Cartesian coordinate system,and it is subsequently modified to consider a spherical cavity in isotropic,symmetric,and saturated media in the spherical coordinate system.It is assumed that the cavity boundary is subjected to sudden time-dependent thermal/mechanical sources.Discontinuous propagating fronts develop in the media due to the aforementioned loading.It is challenging to handle these solutions with numerical methods,and special attention is required to prevent/control numerical dispersion and dissipation.Hence,as previously mentioned,adaptive central high resolution schemes are employed in the present study.展开更多
基金supported by the Swiss National Science Foundation(Grant No.189882)the National Natural Science Foundation of China(Grant No.41961134032)support provided by the New Investigator Award grant from the UK Engineering and Physical Sciences Research Council(Grant No.EP/V012169/1).
文摘In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.
基金Project supported by the National Nattural Science Foundation of China(No.10272070)
文摘Based on the theory of porous media, a general Gurtin variational principle for the initial boundary value problem of dynamical response of fluid-saturated elastic porous media is developed by assuming infinitesimal deformation and incompressible constituents of the solid and fluid phase. The finite element formulation based on this variational principle is also derived. As the functional of the variational principle is a spatial integral of the convolution formulation, the general finite element discretization in space results in symmetrical differential-integral equations in the time domain. In some situations, the differential-integral equations can be reduced to symmetrical differential equations and, as a numerical example, it is employed to analyze the reflection of one-dimensional longitudinal wave in a fluid-saturated porous solid. The numerical results can provide further understanding of the wave propagation in porous media.
文摘The Blot's wave equations of transversely isotropic saturated poroelastic media excited hy non-axisymmetrical harmonic source were solved by means of Fourier expansion and Hankel transform. Then the components of total stress in porous media are expressed with the solutions of Biot's wave equations. The method of research on non-axisymmetrical dynamic response of saturated porous media is discussed, and a numerical result is presented.
基金The project supported by the National Natural Science Foundation of China (50578008) The English text was polished by Yunming Chen
文摘Heat source function method is adopted in the present paper to derive elementary solutions of coupled thermo-hydro-mechanical consolidation for saturated porous media under conjunct actions of instantaneous point heat source, instantaneous point fluid source and constant volume force. By using the so-called fictitious heat source method and images method, the solutions of a semi-infinite saturated porous medium subjected to a local heat source with time-varied intensity on its free surface are developed from elementary solutions. The numerical integral methods for calculating the unsteady temperature, pore pressure and displacement fields are given. The thermomechanical response are analyzed for the case of a circular planar heat source. Besides, the thermal consolidation characteristics of a saturated porous medium subjected to a harmonic thermal loading are also given, and the fluctuation processes of the field variables located below the center of heat source are analyzed.
基金the Natural Science Foundation of Zhejiang Province(No.Y105480)the Science Foundation of Zhejiang Provincial Commission of Education(No.20051414)
文摘This paper is mainly concerned with the dynamic response of an elastic foundation of finite height bounded to the surface of a saturated half-space. The foundation is subjected to time-harmonic vertical loadings. First, the transform solutions for the governing equations of the saturated media are obtained. Then, based on the assumption that the contact between the foundation and the half-space is fully relaxed and the halfspace is completely pervious or impervious, this dynamic mixed boundary-value problem can lead to dual integral equations, which can be further reduced to the Predhohn integral equations of the second kind and solved by numerical procedures. In the numerical extortples, the dynamic colnpliances, displacements and pore pressure are developed for a wide range of frequencies and material/geometrical properties of the saturated soil-foundation system. In most of the cases, the dynamic behavior of an elastic foundation resting on the saturated media significantly differs from that of a rigid disc on the saturated half-space. The solutions obtained can be used to study a variety of wave propagation problems and dynamic soil-structure interactions.
基金supported by the National Natural Science Foundation of China(Grant Nos.11374108 and 10904041)the Foundation for the Author of Guangdong Province Excellent Doctoral Dissertation(Grant No.SYBZZXM201227)+1 种基金the Foundation of Cultivating Outstanding Young Scholars("Thousand,Hundred,Ten"Program)of Guangdong Province,ChinaCAS Key Laboratory of Geospace Environment,University of Science and Technology of China
文摘Based on the nonlinear Schr o¨dinger equation, the interactions of the two Airy–Gaussian components in the incidence are analyzed in saturable media, under the circumstances of the same amplitude and different amplitudes, respectively. It is found that the interaction can be both attractive and repulsive depending on the relative phase. The smaller the interval between two Airy–Gaussian components in the incidence is, the stronger the intensity of the interaction. However, with the equal amplitude, the symmetry is shown and the change of quasi-breathers is opposite in the in-phase case and out-of-phase case. As the distribution factor is increased, the phenomena of the quasi-breather and the self-accelerating of the two Airy–Gaussian components are weakened. When the amplitude is not equal, the image does not have symmetry. The obvious phenomenon of the interaction always arises on the side of larger input power in the incidence. The maximum intensity image is also simulated. Many of the characteristics which are contained within other images can also be concluded in this figure.
基金Project supported by the National Natural Science Foundation of China (No. 10872124)
文摘Based on the three-dimensional Gurtin-type variational principle of the incompressible saturated porous media, a one-dimensional mathematical model for dynamics of the saturated poroelastic Timoshenko cantilever beam is established with two assumptions, i.e., the deformation satisfies the classical single phase Timoshenko beam and the movement of the pore fluid is only in the axial direction of the saturated poroelastic beam. Under some special cases, this mathematical model can be degenerated into the Euler-Bernoulli model, the Rayleigh model, and the shear model of the saturated poroelastic beam, respectively. The dynamic and quasi-static behaviors of a saturated poroelastic Timoshenko cantilever beam with an impermeable fixed end and a permeable free end subjected to a step load at its free end are analyzed by the Laplace transform. The variations of the deflections at the beam free end against time are shown in figures. The influences of the interaction coefficient between the pore fluid and the solid skeleton as well as the slenderness ratio of the beam on the dynamic/quasi-static performances of the beam are examined. It is shown that the quasi-static deflections of the saturated poroelastic beam possess a creep behavior similar to that of viscoelastic beams. In dynamic responses, with the increase of the slenderness ratio, the vibration periods and amplitudes of the deflections at the free end increase, and the time needed for deflections approaching to their stationary values also increases. Moreover, with the increase of the interaction coefficient, the vibrations of the beam deflections decay more strongly, and, eventually, the deflections of the saturated poroelastic beam converge to the static deflections of the classic single phase Timoshenko beam.
文摘In this study, a novel approach to incorporate the pore water pressure in the discrete element method (DEM) to comprehensively model saturated granular media was developed. A numerical model was constructed based on the DEM by implanting additional routines in the basic DEM code; pore water pressure calculations were used with a two-dimensional (2D) model to simulate the undrained behavior of satu- rated granular media. This model coupled the interaction of solid particles and the pore fluid in saturated granular media. Finally, several 2D undrained shear tests were simulated. The test results showed that the model could predict the response of the saturated granular soil to shear loading. The effect of initial compaction was investigated. Biaxial tests on dense and loose specimens were conducted, and the effect of the initial density on the change in shear strength and the volume change of the system was inves- tigated. The overall behavior of loose and dense specimens was phenomenologically similar to the real granular material. Constant volume tests were simulated, and the results were compared to those from the coupled model. Induced anisotropy was micromechanically investigated by studying the contact force orientation. The change in anisotropy depended on the modeling scheme. However, the overall responses of the media obtained usinz the couoled and constant volume methods were similar.
基金The project was supported by the National Natural Science Foundation of China (50478062 and 10532070)Open Fund at the Key Laboratory of Urban Security and Disaster Engineering (Beijing University of Technology)Chinese Ministry of Education.
文摘Abstract An analytical solution to the three-dimen-sional scattering and diffraction of plane SV-waves by a saturated hemispherical alluvial valley in elastic half-space is obtained by using Fourier-Bessel series expan-sion technique. The hemispherical alluvial valley with saturated soil deposits is simulated with Biot's dynamic theory for saturated porous media. The following conclusions based on numerical results can be drawn: (1) there are a significant differences in the seismic response simulation between the previous single-phase models and the present two-phase model; (2) the nor-malized displacements on the free surface of the alluvial valley depend mainly on the incident wave angles, the dimensionless frequency of the incident SV waves and the porosity of sediments; (3) with the increase of the incident angle, the displacement distributions become more complicated; and the displacements on the free surface of the alluvial valley increase as the porosity of sediments increases.
基金China Joint Seismological Science Foundation (95-07-442).
文摘The MTF is extended to case of attenuating incident wave by introducing an attenuation coefficient. The reflection coefficients of this modified MTF and MTF are evaluated and compared when an attenuating wave impinges on the boundary, and the results demonstrate that MTF can be used to absorb slightly attenuating waves and the modified MTF is more capable of absorbing heavily attenuating waves than MTF. The accuracy of modified MTF is also tested by numerical examples of fluid saturated porous media.
基金Project supported by the National Natural Science Foundation of China(Nos.52108347 and 51779217)the Primary Research and Development Plan of Zhejiang Province(Nos.2019C03120 and 2020C01147),China。
文摘Considering the thermal contact resistance and elastic wave impedance at the interface,in this paper we theoretically investigate the thermo-hydro-mechanical(THM)coupling dynamic response of bilayered saturated porous media.Fractional thermoelastic theory is applied to porous media with imperfect thermal and mechanical contact.The analytical solutions of the dynamic response of the bilayered saturated porous media are obtained in frequency domain.Furthermore,the effects of fractional derivative parameters and thermal contact resistance on the dynamic response of such media are systematically discussed.Results show that the effects of fractional derivative parameters on the dynamic response of bilayered saturated porous media are related to the thermal contact resistance at the interface.With increasing thermal contact resistance,the displacement,pore water pressure,and stress decrease gradually.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11174147)the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2009366)
文摘We investigate the existence and stability of surface defect gap solitons at an interface between a defect in a two-dimensional optical lattice and a uniform saturable Kerr nonlinear medium. The surface defect embedded in the two-dimensional optical lattice gives rise to some unique properties. It is interestingly found that for the negative defect, stable surface defect gap solitons can exist both in the semi-infinite gap and in the first gap. The deeper the negative defect, the narrower the stable region in the semi-infinite gap will be. For a positive defect, the surface defect gap solitons exist only in the semi-infinite gap and the stable region localizes in a low power region.
文摘In this paper an elliptic-parabolic coupled system arising from the fluid-solute-heat flowthrough a saturated porous medium is considerd.The uniqueness and the existence of classicalsolutions are proved.The asymptotic behavior of solutions for large time is shown,too.
基金The authors gratefully acknowledge the financial support of Iran National Science Foundation(INSF).
文摘In this study,fully coupled thermo-poroelastic saturated media are simulated by a grid/cell adaptive central high resolution scheme.The central method corresponds to the second order Kurganov-Tadmor(KT)scheme working on adapted cells with the total variation diminishing(TVD)stability condition.The coupled equations include motion,fluid flow,heat flow,continuity condition,and a constitutive equation.The grid/cell adaptation is performed by the interpolating wavelet transform in the multiresolution framework to capture fine scale responses and to obtain a computationally effective solver.With respect to the use of central schemes,the coupled equations should be re-expressed as a system of coupled first-order hyperbolic-parabolic partial differential equations(PDEs)with possible source(load)terms.The system is initially derived in the Cartesian coordinate system,and it is subsequently modified to consider a spherical cavity in isotropic,symmetric,and saturated media in the spherical coordinate system.It is assumed that the cavity boundary is subjected to sudden time-dependent thermal/mechanical sources.Discontinuous propagating fronts develop in the media due to the aforementioned loading.It is challenging to handle these solutions with numerical methods,and special attention is required to prevent/control numerical dispersion and dissipation.Hence,as previously mentioned,adaptive central high resolution schemes are employed in the present study.