One of the important phases of designing a craft is stability analysis and optimization of the drag force in cruise speed. In this research the longitudinal and lateral stability of a planing hull craft (DTMB 62 model...One of the important phases of designing a craft is stability analysis and optimization of the drag force in cruise speed. In this research the longitudinal and lateral stability of a planing hull craft (DTMB 62 model 4667-1) is investigated with some semi-empirical formulae and the effects of some important design parameters are investigated on the limit of stability region. Also on the basis of these empirical formulations and by using a genetic algorithm the drag force is optimized in each constant cruise speed with the stability criteria limits at a constant beam or projected area. Aspect ratio, the longitudinal position of the gravity center and deadrise angle are the optimization parameters. The results show that the aspect ratio and the longitudinal position of the gravity center are two important parameters in optimizing the drag force and for this planing vessel the drag force can be reduced by 22%.展开更多
The design of a lightweight solar powered marine craft is considered in this report. Various design concepts were considered with respect to the hull type, resistance, aesthetics and the operating environment of the v...The design of a lightweight solar powered marine craft is considered in this report. Various design concepts were considered with respect to the hull type, resistance, aesthetics and the operating environment of the vessel. The planning hull-form catamaran was considered for the boat design. The resistance and other hydrodynamic characterization of boat were analyzed using the CAHI and Savitsky method. Detailed algorithm is developed for the sizing of the various components of the solar PV system for the boat. The hull resistance was found to be 740 N corresponding to the boat speed of 5?knot using the above stated methods. The motor power was obtained to be 2.239?kW (3 HP). Torqeedo outboard electric motor of 3?HP was selected for the boat propulsion. The battery bank was seized accordingly and four batteries of 235 AH and 12 V were selected for the storage of electric power for the boat propulsion. Hence, the solar PV module was sized. It was concluded that, due to the limited space for the installation of the PV module, additional source of power (land base) should be made available to completely charge the battery.展开更多
文摘One of the important phases of designing a craft is stability analysis and optimization of the drag force in cruise speed. In this research the longitudinal and lateral stability of a planing hull craft (DTMB 62 model 4667-1) is investigated with some semi-empirical formulae and the effects of some important design parameters are investigated on the limit of stability region. Also on the basis of these empirical formulations and by using a genetic algorithm the drag force is optimized in each constant cruise speed with the stability criteria limits at a constant beam or projected area. Aspect ratio, the longitudinal position of the gravity center and deadrise angle are the optimization parameters. The results show that the aspect ratio and the longitudinal position of the gravity center are two important parameters in optimizing the drag force and for this planing vessel the drag force can be reduced by 22%.
文摘The design of a lightweight solar powered marine craft is considered in this report. Various design concepts were considered with respect to the hull type, resistance, aesthetics and the operating environment of the vessel. The planning hull-form catamaran was considered for the boat design. The resistance and other hydrodynamic characterization of boat were analyzed using the CAHI and Savitsky method. Detailed algorithm is developed for the sizing of the various components of the solar PV system for the boat. The hull resistance was found to be 740 N corresponding to the boat speed of 5?knot using the above stated methods. The motor power was obtained to be 2.239?kW (3 HP). Torqeedo outboard electric motor of 3?HP was selected for the boat propulsion. The battery bank was seized accordingly and four batteries of 235 AH and 12 V were selected for the storage of electric power for the boat propulsion. Hence, the solar PV module was sized. It was concluded that, due to the limited space for the installation of the PV module, additional source of power (land base) should be made available to completely charge the battery.