期刊文献+
共找到3,303篇文章
< 1 2 166 >
每页显示 20 50 100
Structural Engineering of Anode Materials for Low-Temperature Lithium-Ion Batteries:Mechanisms,Strategies,and Prospects 被引量:2
1
作者 Guan Wang Guixin Wang +2 位作者 Linfeng Fei Lina Zhao Haitao Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期169-195,共27页
The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contribut... The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance. 展开更多
关键词 Low-temperature performance anode materials Microstructural regulations Surface modifications
下载PDF
A Review of Anode Materials for Dual‑Ion Batteries
2
作者 Hongzheng Wu Shenghao Luo +6 位作者 Hubing Wang Li Li Yaobing Fang Fan Zhang Xuenong Gao Zhengguo Zhang Wenhui Yuan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期618-674,共57页
Distinct from"rockingchair"lithium-ion batteries(LIBs),the unique anionic intercalation chemistry on the cathode side of dual-ion batteries(DIBs)endows them with intrinsic advantages of low cost,high voltage... Distinct from"rockingchair"lithium-ion batteries(LIBs),the unique anionic intercalation chemistry on the cathode side of dual-ion batteries(DIBs)endows them with intrinsic advantages of low cost,high voltage,and ecofriendly,which is attracting widespread attention,and is expected to achieve the next generation of large-scale energy storage applications.Although the electrochemical reactions on the anode side of DIBs are similar to that of LIBs,in fact,to match the rapid insertion kinetics of anions on the cathode side and consider the compatibility with electrolyte system which also serves as an active material,the anode materials play a very important role,and there is an urgent demand for rational structural design and performance optimization.A review and summarization of previous studies will facilitate the exploration and optimization of DIBs in the future.Here,we summarize the development process and working mechanism of DIBs and exhaustively categorize the latest research of DIBs anode materials and their applications in different battery systems.Moreover,the structural design,reaction mechanism and electrochemical performance of anode materials are briefly discussed.Finally,the fundamental challenges,potential strategies and perspectives are also put forward.It is hoped that this review could shed some light for researchers to explore more superior anode materials and advanced systems to further promote the development of DIBs. 展开更多
关键词 Dual-ion batteries anode Carbonaceous materials Metallic materials Organic materials Optimization strategies
下载PDF
A review of anode materials for sodium ion batteries
3
作者 Syed Ali Riza XU Ri-gan +6 位作者 LIU Qi Muhammad Hassan YANG Qiang MU Dao-bin LI Li WU Feng CHEN Ren-jie 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期743-769,共27页
Lithium-ion batteries(LIBs)are used in electric vehicles and portable smart devices,but lithium resources are dwindling and there is an increasing demand which has to be catered for.Sodium ion batteries(SIBs),which ar... Lithium-ion batteries(LIBs)are used in electric vehicles and portable smart devices,but lithium resources are dwindling and there is an increasing demand which has to be catered for.Sodium ion batteries(SIBs),which are less costly,are a promising replacement for LIBs because of the abundant natural reserves of sodium.The anode of a SIB is a necessary component of the battery but is less understood than the cathode.This review outlines the development of various types of anodes,including carbonbased,metallic and organic,which operate using different reaction mechanisms such as intercalation,alloying and conversion,and considers their challenges and prospects.Strategies for modifying their structures by doping and coating,and also modifying the solid electrolyte interface are discussed.In addition,this review also discusses the challenges encountered by the anode of SIBs and the solutions. 展开更多
关键词 Sodium ion batteries anode Carbon material Metallic compound ORGANIC
下载PDF
Effect of contact materials on the transient characteristics of vacuum arc plasma and anode erosion
4
作者 Ze YANG Dongsheng CAI +1 位作者 Qi HUANG Lijun WANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第11期170-180,共11页
In this study, the mechanisms of the anode phenomena and anode erosion with various contact materials were investigated. Arc parameters were calculated, and the anode temperature was predicted with a transient self-co... In this study, the mechanisms of the anode phenomena and anode erosion with various contact materials were investigated. Arc parameters were calculated, and the anode temperature was predicted with a transient self-consistent model. The simulation results predicted a constricted arc column and obvious anode phenomena in Cu–Cr alloy contacts than in W–Cu alloy contacts.This observation could be the reason for the concentrated anode erosion in Cu–Cr alloys. For the contacts made by pure tungsten(W) and W–Cu alloy, the anode temperature increased rapidly because of the low specific heat of W. However, the maximum energy flux from the arc column to the anode surface was lower than in other cases. The simulation results were compared with experimental results. 展开更多
关键词 vacuum arc MHD model anode erosion contact materials
下载PDF
Sol-gel synthesis of nanometer silicon/silicon suboxide/carbon anode material
5
作者 QIN Tong WANG Zheng LI Zhengzheng 《Baosteel Technical Research》 CAS 2024年第2期12-18,共7页
A stacked Si/SiO_(x)/C composite anode material with carbon-coated structure was prepared by sol-gel method combined with carbothermal reduction using organic silicon.The results of X-ray diffractometry, scanning elec... A stacked Si/SiO_(x)/C composite anode material with carbon-coated structure was prepared by sol-gel method combined with carbothermal reduction using organic silicon.The results of X-ray diffractometry, scanning electron microscopy, and elemental analysis show that the Si/SiO_(x)/C material is a secondary particle with a porous micronanostructure, and the presence of nanometer silicon does not affect the carbothermal reduction and carbon coating.Electrochemical test results indicate that the specific capacity and first coulombic efficiency of SiO_(x)/C composite with nanometer silicon can be increased to 1 946.05 mAh/g and 76.49%,respectively.The reversible specific capacity of Si/SiO_(x)/C material blended with graphite is 749.69 mAh/g after 100 cycles at a current density of 0.1 C,and the capacity retention rate is up to 89.03%.Therefore, the composite has excellent electrochemical cycle stability. 展开更多
关键词 sol-gel method nanometer silicon silicon suboxide anode material
下载PDF
Two-dimensional layered In_(2)P_(3)S_(9): A novel superior anode material for sodium-ion batteries
6
作者 Longsheng Zhong Hongneng Chen +4 位作者 Yanzhe Sheng Yiting Sun Yanhe Xiao Baochang Cheng Shuijin Lei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期294-304,I0008,共12页
Developing reliable and efficient anode materials is essential for the successfully practical application of sodium-ion batteries.Herein,employing a straightforward and rapid chemical vapor deposition technique,two-di... Developing reliable and efficient anode materials is essential for the successfully practical application of sodium-ion batteries.Herein,employing a straightforward and rapid chemical vapor deposition technique,two-dimensional layered ternary indium phosphorus sulfide(In_(2)P_(3)S_(9)) nanosheets are prepared.The layered structure and ternary composition of the In_(2)P_(3)S_(9) electrode result in impressive electrochemical performance,including a high reversible capacity of 704 mA h g^(-1) at 0.1 A g^(-1),an outstanding rate capability with 425 mA h g^(-1) at 5 A g^(-1),and an exceptional cycling stability with a capacity retention of88% after 350 cycles at 1 A g^(-1).Furthermore,sodium-ion full cell also affords a high capacity of 308 and114 mA h g^(-1) at 0.1 and 5 A g^(-1).Ex-situ X-ray diffraction and ex-situ high-resolution transmission electron microscopy tests are conducted to investigate the underlying Na-storage mechanism of In_(2)P_(3)S_(9).The results reveal that during the first cycle,the P-S bond is broken to form the elemental P and In_(2)S_(3),collectively contributing to a remarkably high reversible specific capacity.The excellent electrochemical energy storage results corroborate the practical application potential of In_(2)P_(3)S_(9) for sodium-ion batteries. 展开更多
关键词 Metal thiophosphate In_(2)P_(3)S_(9) anode material Sodium-ion battery Full cell
下载PDF
Review and prospects on the low-voltage Na_(2)Ti_(3)O_(7) anode materials for sodium-ion batteries
7
作者 Jun Dong Yalong Jiang +3 位作者 Ruxing Wang Qiulong Wei Qinyou An Xiaoxing Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期446-460,I0011,共16页
Due to its low cost and natural abundance of sodium,Na-ion batteries(NIBs)are promising candidates for large-scale energy storage systems.The development of ultralow voltage anode materials is of great significance in... Due to its low cost and natural abundance of sodium,Na-ion batteries(NIBs)are promising candidates for large-scale energy storage systems.The development of ultralow voltage anode materials is of great significance in improving the energy density of NIBs.Low-voltage anode materials,however,are severely lacking in NIBs.Of all the reported insertion oxides anodes,the Na_(2)Ti_(3)O_(7) has the lowest operating voltage(an average potential of 0.3 V vs.Na^(+)/Na)and is less likely to deposit sodium,which has excellent potential for achieving NIBs with high energy densities and high safety.Although significant progress has been made,achieving Na_(2)Ti_(3)O_(7) electrodes with excellent performance remains a severe challenge.This paper systematically summarizes and discusses the physicochemical properties and synthesis methods of Na_(2)Ti_(3)O_(7).Then,the sodium storage mechanisms,key issues and challenges,and the optimization strategies for the electrochemical performance of Na_(2)Ti_(3)O_(7) are classified and further elaborated.Finally,remaining challenges and future research directions on the Na_(2)Ti_(3)O_(7) anode are highlighted.This review offers insights into the design of high-energy and high-safety NIBs. 展开更多
关键词 Sodium-ion batteries Low-voltage anode materials Na_(2)Ti_(3)O_(7) Electrochemical performances Electrochemical mechanism
下载PDF
A review on anode materials for lithium/sodium-ion batteries 被引量:15
8
作者 Abhimanyu Kumar Prajapati Ashish Bhatnagar 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期509-540,I0013,共33页
Since lithium-ion batteries(LIBs) have been substantially researched in recent years, they now possess exceptional energy and power densities, making them the most suited energy storage technology for use in developed... Since lithium-ion batteries(LIBs) have been substantially researched in recent years, they now possess exceptional energy and power densities, making them the most suited energy storage technology for use in developed and developing industries like stationary storage and electric cars, etc. Concerns about the cost and availability of lithium have prompted research into alternatives, such as sodium-ion batteries(SIBs), which use sodium instead of lithium as the charge carrier. This is especially relevant for stationary applications, where the size and weight of battery are less important. The working efficiency and capacity of these batteries are mainly dependent on the anode, cathode, and electrolyte. The anode,which is one of these components, is by far the most important part of the rechargeable battery.Because of its characteristics and its structure, the anode has a tremendous impact on the overall performance of the battery as a whole. Keeping the above in view, in this review we critically reviewed the different types of anodes and their performances studied to date in LIBs and SIBs. The review article is divided into three main sections, namely:(i) intercalation reaction-based anode materials;(ii) alloying reaction-based anode materials;and(iii) conversion reaction-based anode materials, which are further classified into a number of subsections based on the type of material used. In each main section, we have discussed the merits and challenges faced by their particular system. Afterward, a brief summary of the review has been discussed. Finally, the road ahead for better application of Li/Na-ion batteries is discussed, which seems to mainly depend on exploring the innovative materials as anode and on the inoperando characterization of the existing materials for making them more capable in terms of application in rechargeable batteries. 展开更多
关键词 Lithium/Sodium-ion batteries anode materials Nanomaterials Metal-organic framework Conversion materials Intercalated materials Alloying materials
下载PDF
Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries 被引量:4
9
作者 Sinian Yang Hongxia Du +5 位作者 Yuting Li Xiangsi Wu Bensheng Xiao Zhangxing He Qiaobao Zhang Xianwen Wu 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1531-1552,共22页
Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced elect... Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation,hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional(3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs. 展开更多
关键词 Zinc ion battery Structure design of substrate materials Dendrite-free 3D Zn anode
下载PDF
Effects of anode material on the evolution of anode plasma and characteristics of intense electron beam diode
10
作者 华叶 吴平 +5 位作者 万红 白书欣 龚瑾瑜 朱梦 白现臣 张广帅 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第9期82-90,共9页
In this paper,three kinds of materials including graphite,titanium(Ti)and molybdenum(Mo)are used as anodes to figure out the influence factors of anode material on the characteristics of the intense electron beam diod... In this paper,three kinds of materials including graphite,titanium(Ti)and molybdenum(Mo)are used as anodes to figure out the influence factors of anode material on the characteristics of the intense electron beam diode.The results show that the characteristics of diode are mainly determined by the cathode plasma motion under a 15 mm diode gap,in which the typical electron beam parameters are 280 kV,3.5 kA.When the diode gap is reduced to 5 mm,the voltage of the electron beam reduces to about 200 kV,and its current increases to more than 8.2 kA.It is calculated that the surface temperatures of Ti and Mo anodes are higher than their melting points.The diode plasma luminescence images show that Ti and Mo anodes produce plasmas soon after the bombardment of electron beams.Ti and Mo lines are respectively found in the plasma composition of Ti and Mo anode diodes.Surface melting traces are also observed on Ti and Mo anodes by comparing the micromorphologies before and after bombardment of the electron beam.These results suggest that the time of anode plasma generation is closely related to the anode material.Compared with graphite,metal Ti and Mo anodes are more likely to produce large amounts of plasma due to their more significant temperature rise effect.According to the moment that anode plasma begins to generate,the average expansion velocities of cathode and anode plasma are estimated by fitting the improved space-charge limited flow model.This reveals that generation and motion of the anode plasma significantly affect the characteristics of intense electron beam diode. 展开更多
关键词 anode material anode plasma intense electron beam plasma expanding velocity
下载PDF
Carbon-coated ZnO Nanocomposite Microspheres as Anode Materials for Lithium-ion Batteries
11
作者 范影强 陈秀娟 XU Dan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期490-495,共6页
The carbon-coated ZnO nanospheres materials have been synthesized via a simple hydrothermal method.The effect of carbon content on the microstructure,morphology and electrochemical performance of the materials was inv... The carbon-coated ZnO nanospheres materials have been synthesized via a simple hydrothermal method.The effect of carbon content on the microstructure,morphology and electrochemical performance of the materials was investigated by XRD,Raman spectroscopy,transmission electron microscopy,scanning electron microscopy and electrochemical techniques.Research results show that the spherical ZnO/C material with a carbon cladding content of 10%is very homogeneous and approximately 200 nm in size.The electrochemical performances of the ZnO/C nanospheres as an anode materials are examines.The ZnO/C exhibits better stability than pure ZnO,excellent lithium storage properties as well as improved circulation performance.The Coulomb efficiency of the ZnO/C with 10%carbon coated content reaches 98%.The improvement of electrochemical performance can be attributed to the carbon layer on the ZnO surface.The large volume change of ZnO during the charge-discharge process can be effectively relieved. 展开更多
关键词 ZNO carbon coating anode material lithium-ion batteries
下载PDF
Two-dimensional dumbbell silicene as a promising anode material for(Li/Na/K)-ion batteries
12
作者 刘曼 程子爽 +7 位作者 张小明 李叶枫 靳蕾 刘丛 代学芳 刘影 王啸天 刘国栋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期28-34,共7页
Rechargeable ion batteries require anode materials with excellent performance,presenting a key challenge for researchers.This paper explores the potential of using two-dimensional dumbbell silicene as an anode materia... Rechargeable ion batteries require anode materials with excellent performance,presenting a key challenge for researchers.This paper explores the potential of using two-dimensional dumbbell silicene as an anode material for alkali metal ion batteries through density functional theory(DFT)calculations.Our findings demonstrate that alkali metal ions have negative adsorption energies on dumbbell silicene,and the energy barriers for Li/Na/K ion diffusion are as low as0.032 e V/0.055 e V/0.21 e V,indicating that metal ions can easily diffuse across the entire surface of dumbbell silicene.Additionally,the average open circuit voltages of dumbbell silicene as anode for Li-ion,Na-ion,and K-ion batteries are 0.42 V,0.41 V,and 0.60 V,respectively,with corresponding storage capacities of 716 m Ah/g,622 m Ah/g,and 716 m Ah/g.These results suggest that dumbbell silicene is an ideal anode material for Li-ion,Na-ion,and K-ion batteries,with high capacity,low open circuit voltage,and high ion diffusion kinetics.Moreover,our calculations show that the theoretical capacities obtained using DFT-D2 are higher than those obtained using DFT-D3,providing a valuable reference for subsequent theoretical calculations. 展开更多
关键词 dumbbell silicene density functional theory anode materials ion batteries
下载PDF
2D Materials Boost Advanced Zn Anodes:Principles,Advances,and Challenges
13
作者 Songhe Zheng Wanyu Zhao +3 位作者 Jianping Chen Xiaoli Zhao Zhenghui Pan Xiaowei Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期1-22,共22页
Aqueous zinc-ion battery(ZIB)featuring with high safety,low cost,environmentally friendly,and high energy density is one of the most promising systems for large-scale energy storage application.Despite extensive resea... Aqueous zinc-ion battery(ZIB)featuring with high safety,low cost,environmentally friendly,and high energy density is one of the most promising systems for large-scale energy storage application.Despite extensive research progress made in developing high-performance cathodes,the Zn anode issues,such as Zn dendrites,corrosion,and hydrogen evolution,have been observed to shorten ZIB’s lifespan seriously,thus restricting their practical application.Engineering advanced Zn anodes based on two-dimensional(2D)materials are widely investigated to address these issues.With atomic thickness,2D materials possess ultrahigh specific surface area,much exposed active sites,superior mechanical strength and flexibility,and unique electrical properties,which confirm to be a promising alternative anode material for ZIBs.This review aims to boost rational design strategies of 2D materials for practical application of ZIB by combining the fundamental principle and research progress.Firstly,the fundamental principles of 2D materials against the drawbacks of Zn anode are introduced.Then,the designed strategies of several typical 2D materials for stable Zn anodes are comprehensively summarized.Finally,perspectives on the future development of advanced Zn anodes by taking advantage of these unique properties of 2D materials are proposed. 展开更多
关键词 Zinc-ion battery Large-scale energy storage application Zn anode LIFESPAN 2D materials
下载PDF
The Microparticles SiOx Loaded on PAN-C Nanofiber as Three-Dimensional Anode Material for High-Performance Lithium-Ion Batteries
14
作者 Jiahao Wang Jie Zhou +2 位作者 Zhengping Zhao Feng Chen Mingqiang Zhong 《Journal of Renewable Materials》 EI 2023年第8期3309-3332,共24页
Three-dimensional C/SiOx nanofiber anode was prepared by polydimethylsiloxane(PDMS)and polyacrylonitrile(PAN)as precursors via electrospinning and freeze-drying successfully.In contrast to conventional carbon cover-ing... Three-dimensional C/SiOx nanofiber anode was prepared by polydimethylsiloxane(PDMS)and polyacrylonitrile(PAN)as precursors via electrospinning and freeze-drying successfully.In contrast to conventional carbon cover-ing Si-based anode materials,the C/SiOx structure is made up of PAN-C,a 3D carbon substance,and SiOx load-ing steadily on PAN-C.The PAN carbon nanofibers and loaded SiOx from pyrolyzed PDMS give increased conductivity and a stable complex structure.When employed as lithium-ion batteries(LIBs)anode materials,C/SiOx-1%composites were discovered to have an extremely high lithium storage capacity and good cycle per-formance.At a current density of 100 mA/g,its reversible capacity remained at 761 mA/h after 50 charge-dis-charge cycles and at 670 mA/h after 200 cycles.The C/SiOx-1%composite aerogel is a particularly intriguing anode candidate for high-performance LIBs due to these appealing qualities. 展开更多
关键词 Batteries anode materials carbon nanofibers composites aerogel
下载PDF
Synthesis of Cu_2O/reduced graphene oxide composites as anode materials for lithium ion batteries 被引量:6
15
作者 颜果春 李新海 +3 位作者 王志兴 郭华军 张倩 彭文杰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3691-3696,共6页
A facile way was used to synthesize Cu2O/reduced graphene oxide (rGO) composites with octahedron-like morphology in aqueous solution without any surfactant. TEM images of the obtained Cu2O/rGOs reveal that the Cu2O ... A facile way was used to synthesize Cu2O/reduced graphene oxide (rGO) composites with octahedron-like morphology in aqueous solution without any surfactant. TEM images of the obtained Cu2O/rGOs reveal that the Cu2O particles and rGO distribute hierarchically and the primary Cu2O particles are encapsulated well in the graphene nanosheets. The electrochemical performance of Cu2O/rGOs is enhanced compared with bare Cu2O when they are employed as anode materials for lithium ion batteries. The Cu2O/rGO composites maintain a reversible capacity of 348.4 mA?h/g after 50 cycles at a current density of 100 mA/g. In addition, the composites retain 305.8 mA?h/g after 60 cycles at various current densities of 50, 100, 200, 400 and 800 mA/g. 展开更多
关键词 cuprous oxide reduced graphene oxide anode material
下载PDF
Preparation and electrochemical performance of tantalum-doped lithium titanate as anode material for lithium-ion battery 被引量:3
16
作者 胡国荣 张新龙 彭忠东 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第10期2248-2253,共6页
The electrochemical performance of Ta-doped Li4Ti5O12 in the form of Li4Ti4.95Ta0.05O12 was characterized.X-ray diffraction(XRD) and scanning electron microscopy(SEM) were employed to characterize the structure an... The electrochemical performance of Ta-doped Li4Ti5O12 in the form of Li4Ti4.95Ta0.05O12 was characterized.X-ray diffraction(XRD) and scanning electron microscopy(SEM) were employed to characterize the structure and morphology of Li4Ti4.95Ta0.05O12.Ta-doping does not change the phase composition and particle morphology,while improves remarkably its cycling stability at high charge/discharge rate.Li4Ti4.95Ta0.05O12 exhibits an excellent rate capability with a reversible capacity of 116.1 mA·h/g at 10C and even 91.0 mA·h/g at 30C.The substitution of Ta for Ti site can enhance the electronic conductivity of Li4Ti5O12 via the generation of mixing Ti4+/Ti3+,which indicates that Li4Ti4.95Ta0.05O12 is a promising candidate material for anodes in lithium-ion battery application. 展开更多
关键词 lithium-ion battery lithium titanate anode material DOPING
下载PDF
Effect of germanium on electrochemical performance of chain-like Co-P anode material for Ni/Co rechargeable batteries 被引量:1
17
作者 李佳佳 赵相玉 +4 位作者 杜伟 杨猛 马立群 丁毅 沈晓冬 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2060-2065,共6页
Co-P (4.9% P) powders with a chain-like morphology were prepared by a novel chemical reduction method. The Co-P and germanium powders were mixed at various mass ratios to form Co-P composite electrodes. Charge and d... Co-P (4.9% P) powders with a chain-like morphology were prepared by a novel chemical reduction method. The Co-P and germanium powders were mixed at various mass ratios to form Co-P composite electrodes. Charge and discharge test and electrochemical impedance spectroscopy (EIS) were carried out to investigate the electrochemical performance, which can be significantly improved by the addition of germanium. For instance, when the mass ratio of Co-P powders to germanium is 5:1, the sample electrode shows a reversible discharge capacity of 350.3 mA·h/g and a high capacity retention rate of 95.9% after 50 cycles. The results of cyclic voltammmetry (CV) show the reaction mechanism of Co/Co(OH)2 within Co-P composite electrodes and EIS indicates that this electrode shows a low charge-transfer resistance, facilitating the oxidation of Co to Co(OH)2. 展开更多
关键词 Co-P alloy GERMANIUM anode material electrochemical performance
下载PDF
Recent Progress in Improving Rate Performance of Cellulose-Derived Carbon Materials for Sodium-Ion Batteries
18
作者 Fujuan Wang Tianyun Zhang +2 位作者 Tian Zhang Tianqi He Fen Ran 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期102-147,共46页
Cellulose-derived carbon is regarded as one of the most promising candidates for high-performance anode materials in sodium-ion batteries;however,its poor rate performance at higher current density remains a challenge... Cellulose-derived carbon is regarded as one of the most promising candidates for high-performance anode materials in sodium-ion batteries;however,its poor rate performance at higher current density remains a challenge to achieve high power density sodium-ion batteries.The present review comprehensively elucidates the structural characteristics of cellulose-based materials and cellulose-derived carbon materials,explores the limitations in enhancing rate performance arising from ion diffusion and electronic transfer at the level of cellulose-derived carbon materials,and proposes corresponding strategies to improve rate performance targeted at various precursors of cellulose-based materials.This review also presents an update on recent progress in cellulose-based materials and cellulose-derived carbon materials,with particular focuses on their molecular,crystalline,and aggregation structures.Furthermore,the relationship between storage sodium and rate performance the carbon materials is elucidated through theoretical calculations and characterization analyses.Finally,future perspectives regarding challenges and opportunities in the research field of cellulose-derived carbon anodes are briefly highlighted. 展开更多
关键词 CELLULOSE Hard carbon anode materials Rate performance Sodium-ion batteries
下载PDF
Carbon-based interface engineering and architecture design for high-performance lithium metal anodes
19
作者 Na Zhu Yuxiang Yang +3 位作者 Yu Li Ying Bai Junfeng Rong Chuan Wu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期207-235,共29页
Metallic lithium(Li)is considered the“Holy Grail”anode material for the nextgeneration of Li batteries with high energy density owing to the extraordinary theoretical specific capacity and the lowest negative electr... Metallic lithium(Li)is considered the“Holy Grail”anode material for the nextgeneration of Li batteries with high energy density owing to the extraordinary theoretical specific capacity and the lowest negative electrochemical potential.However,owing to inhomogeneous Li-ion flux,Li anodes undergo uncontrollable Li deposition,leading to limited power output and practical applications.Carbon materials and their composites with controllable structures and properties have received extensive attention to guide the homogeneous growth of Li to achieve high-performance Li anodes.In this review,the correlation between the behavior of Li anode and the properties of carbon materials is proposed.Subsequently,we review emerging strategies for rationally designing high-performance Li anodes with carbon materials,including interface engineering(stabilizing solid electrolyte interphase layer and other functionalized interfacial layer)and architecture design of host carbon(constructing three-dimension structure,preparing hollow structure,introducing lithiophilic sites,optimizing geometric effects,and compositing with Li).Based on the insights,some prospects on critical challenges and possible future research directions in this field are concluded.It is anticipated that further innovative works on the fundamental chemistry and theoretical research of Li anodes are needed. 展开更多
关键词 carbon materials DENDRITES HOSTS interfacial layers Li metal anodes
下载PDF
V-MOF-derived V_(2)O_(5) nanoparticles-modified carbon fiber cloth-based dendrite-free anode for high-performance lithium metal batteries
20
作者 Tao Wei Mengting Wang +5 位作者 Yanyan Zhou Xingtong Guo Sijia Wang Ye Liu Cheng Sun Qian Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期13-23,共11页
At present,commercial Li-ion batteries are hardly to satisfy the growing demand for high energy density,for this purpose,lithium metal batteries have attracted worldwide attention in recent years.However,its practical... At present,commercial Li-ion batteries are hardly to satisfy the growing demand for high energy density,for this purpose,lithium metal batteries have attracted worldwide attention in recent years.However,its practical applications are hindered by the formation of Li dendrites and volume effect during Li plating/stripping process,which leads to a lot of safety hazards.Herein,we first employed MOF-derived V_(2)O_(5) nanoparticles to decorate the carbon fiber cloth(CFC)backbone to acquire a lithiophilic 3D porous conductive framework(CFC@V_(2)O_(5)).Subsequently,the CFC@V_(2)O_(5) skeleton was permeated with molten Li to prepare CFC@V_(2)O_(5)@Li composite anode.The CFC@V_(2)O_(5)@Li composite anode can be stably cycled for more than 1650 h at high current density(5 mA·cm^(-2))and areal capacity(5 mA·h·cm^(–2)).The prepared full cell can initially maintain a high capacity of about 143 mA·h·g^(-1) even at a high current density of 5 C,and can still maintain 114 mA·h·g^(-1) after 1000 cycles. 展开更多
关键词 Three-dimensional(3D)conductive frameworks Lithium metal anode Lithiophilic material MOF-derived materials Prestoring lithium
下载PDF
上一页 1 2 166 下一页 到第
使用帮助 返回顶部