Oil and gas exploration and production is the most important and key segment in the whole business chain of the petroleum industry.Therefore,oil companies always put much emphasis on making scientific and reasonable d...Oil and gas exploration and production is the most important and key segment in the whole business chain of the petroleum industry.Therefore,oil companies always put much emphasis on making scientific and reasonable decisions about investment scale and structure in the upstream sector,so that they can minimise business risks and obtain high returns.According to the system dynamics theories and methods and based on the actual results from an oil company's practice in China,a system dynamics model is built in this paper for analyzing and forecasting the upstream investment scale and structure for an oil company.This model was used to analyze the investment effect of a large oil company in China, and the results showed that the total upstream investment scale will decline slowly in a short period and the investment proportion of different parts should be adjusted if some influencing factors are taken into account.This application practice was compared with the actual data and indicated that the system dynamics(SD) model presented in this paper is a useful tool for analyzing and forecasting of upstream investment scale and structure of oil companies in their investment decisions.展开更多
How to obtain fast-growth errors, which is comparable to the actual forecast growth error, is a crucial problem in ensemble forecast (EF). The method, Breeding of Growth Modes (BGM), which has been used to generat...How to obtain fast-growth errors, which is comparable to the actual forecast growth error, is a crucial problem in ensemble forecast (EF). The method, Breeding of Growth Modes (BGM), which has been used to generate perturbations for medium-range EF at NCEP, simulates the development of fast-growth errors in the analysis cycle, and is a reasonable choice in capturing growing errors modes, especially for extreme weather by BGM. An ideal supercell storm, simulated by Weather Research Forecast model (WRF), occurred in central Oklahoma on 20 May 1977. This simulation was used to study the application of BGM methods in the meso-scale strong convective Ensemble Prediction System (EPS). We compared the forecasting skills of EPS by different pertubation methods, like Monte-Carlo and BGM. The results show that the ensemble average forecast based on Monte-Carlo with statistics meaning is superior to the single-deterministic prediction, but a less dynamic process of the method leads to a smaller spread than expected. The fast-growth errors of BGM are comparable to the actual short-range forecast error and a more appropriate ensemble spread. Considering evaluation indexes and scores, the forecast skills of EPS by BGM is higher than Monte-Carlo's. Furthermore, various breeding cycles have different effects on precipitation and non-precipitation fields, confirmation of reasonable cycles need consider balance between variables.展开更多
With the rapid development of China's modern cities,the scale of urban construction land has experienced dramatic changes.The forecast of urban construction land is the important content of urban construction deve...With the rapid development of China's modern cities,the scale of urban construction land has experienced dramatic changes.The forecast of urban construction land is the important content of urban construction development,and guarantee for healthy,rapid and intensive development of cities,therefore,we must reasonably determine the scale of urban construction land.Based on the status quo of construction land in Chongqing Municipality during the period 2000-2009,this article selects GM(1,1) model,linear model and non-linear model,to forecast the scale of construction land and each type of land subordinate to it in Chongqing Municipality during the period 2010-2014,respectively.The results show that the construction land in Chongqing Municipality will increase substantially during the period 2010-2014,and the area of each type of land subordinate to construction land will also increase to varying degrees,therefore the land contradictions will become more prominent.展开更多
This paper studies and predicts the number growth of China's mobile users by using the power-law regression. We find that the number growth of the mobile users follows a power law. Motivated by the data on the evolut...This paper studies and predicts the number growth of China's mobile users by using the power-law regression. We find that the number growth of the mobile users follows a power law. Motivated by the data on the evolution of the mobile users, we consider scenarios of self-organization of accelerating growth networks into scale-free structures and propose a directed network model, in which the nodes grow following a power-law acceleration. The expressions for the transient and the stationary average degree distributions are obtained by using the Poisson process. This result shows that the model generates appropriate power-law connectivity distributions. Therefore, we find a power-law acceleration invariance of the scale-free networks. The numerical simulations of the models agree with the analytical results well.展开更多
概率预报是由集合预报衍生、包含不确定性信息的客观产品,对业务决策服务有重要的参考价值。传统的邻域集合概率法中,邻域半径固定不变,不符合实际天气过程中牵涉甚广的尺度谱。为此引入基于集合匹配尺度的邻域集合概率法(Neighborhood ...概率预报是由集合预报衍生、包含不确定性信息的客观产品,对业务决策服务有重要的参考价值。传统的邻域集合概率法中,邻域半径固定不变,不符合实际天气过程中牵涉甚广的尺度谱。为此引入基于集合匹配尺度的邻域集合概率法(Neighborhood Ensemble Probability based on Ensemble Agreement Scale,EAS_NEP),并在中国南方典型的梅雨锋暴雨中开展准确性和预报技巧的定量检验评估,以期验证该方法在此类过程中的适用性,并促进其在实际业务中的推广使用。联合扰动初始场、侧边界和物理过程所得到的集合预报能较好地表征实际的预报不确定性,进一步在此基础上比较了格点概率法、不同半径的邻域集合概率法以及EAS_NEP的优劣。试验结果表明,EAS_NEP能根据集合成员间的一致性程度,自适应地调整邻域半径,其在集中型降水中所确定的邻域半径通常大于分散型降水。动态调整的邻域半径既避免了半径过大时的过度平滑与关键信息丢失,又消除了半径较小所带来的奇异点,其空间分布呈阶梯型,空间连续性更优。此外,BS(布莱尔评分)、FSS(分数技巧评分)和ROC曲线(相对作用特征曲线)等定量评估结果也体现出EAS_NEP相比传统方法正的预报技巧,尤其是在分散型降水和高阈值检验时优势更明显。以上结果表明,EAS_NEP在梅雨锋暴雨的预报中具有较好的应用前景,运用在业务中能有效提升概率预报质量。展开更多
为提高综合能源系统(integrated energy system,IES)多元负荷预测的精确度,综合考虑多能源相互作用机理、多元负荷耦合特性及气象因素相关性,提出了一种基于多尺度特征提取的IES多元负荷短期联合预测方法。首先,通过最大互信息系数(maxi...为提高综合能源系统(integrated energy system,IES)多元负荷预测的精确度,综合考虑多能源相互作用机理、多元负荷耦合特性及气象因素相关性,提出了一种基于多尺度特征提取的IES多元负荷短期联合预测方法。首先,通过最大互信息系数(maximum information coefficient,MIC)研究多元负荷耦合特性及影响因素相关性,选择预测特征;其次,利用变分模态分解技术(variational mode decomposition,VMD)对输入特征进行分解,提升特征纯洁度;最后,采用卷积神经网络-双向长短期记忆神经网络(convolutional neural network-bidirectional long and short-term memory,CNN-BiLSTM)多任务学习模型进行纵向、横向特征选择,注意力(Attention)机制对重要特征差异化提取,实现多尺度特征提取,并利用雪消融优化器(snow ablation optmizer,SAO)对VMD和CNN-BiLSTM多任务学习模型进行超参数优化,以此实现IES多元负荷的联合预测。以美国亚利桑那州实测数据进行实验,结果表明,无论与单一预测方法还是与其他模型相比,所提联合预测方法的均方根误差更低、准确率更高,在IES多元负荷预测中具有更高的精确性和鲁棒性。展开更多
文摘Oil and gas exploration and production is the most important and key segment in the whole business chain of the petroleum industry.Therefore,oil companies always put much emphasis on making scientific and reasonable decisions about investment scale and structure in the upstream sector,so that they can minimise business risks and obtain high returns.According to the system dynamics theories and methods and based on the actual results from an oil company's practice in China,a system dynamics model is built in this paper for analyzing and forecasting the upstream investment scale and structure for an oil company.This model was used to analyze the investment effect of a large oil company in China, and the results showed that the total upstream investment scale will decline slowly in a short period and the investment proportion of different parts should be adjusted if some influencing factors are taken into account.This application practice was compared with the actual data and indicated that the system dynamics(SD) model presented in this paper is a useful tool for analyzing and forecasting of upstream investment scale and structure of oil companies in their investment decisions.
基金supported jointly by the Nature Science Foundation of China (Project No:40875068)Public-Welfare Meteorological Research Foundation (ProjectNo:GYHY200806029)
文摘How to obtain fast-growth errors, which is comparable to the actual forecast growth error, is a crucial problem in ensemble forecast (EF). The method, Breeding of Growth Modes (BGM), which has been used to generate perturbations for medium-range EF at NCEP, simulates the development of fast-growth errors in the analysis cycle, and is a reasonable choice in capturing growing errors modes, especially for extreme weather by BGM. An ideal supercell storm, simulated by Weather Research Forecast model (WRF), occurred in central Oklahoma on 20 May 1977. This simulation was used to study the application of BGM methods in the meso-scale strong convective Ensemble Prediction System (EPS). We compared the forecasting skills of EPS by different pertubation methods, like Monte-Carlo and BGM. The results show that the ensemble average forecast based on Monte-Carlo with statistics meaning is superior to the single-deterministic prediction, but a less dynamic process of the method leads to a smaller spread than expected. The fast-growth errors of BGM are comparable to the actual short-range forecast error and a more appropriate ensemble spread. Considering evaluation indexes and scores, the forecast skills of EPS by BGM is higher than Monte-Carlo's. Furthermore, various breeding cycles have different effects on precipitation and non-precipitation fields, confirmation of reasonable cycles need consider balance between variables.
文摘With the rapid development of China's modern cities,the scale of urban construction land has experienced dramatic changes.The forecast of urban construction land is the important content of urban construction development,and guarantee for healthy,rapid and intensive development of cities,therefore,we must reasonably determine the scale of urban construction land.Based on the status quo of construction land in Chongqing Municipality during the period 2000-2009,this article selects GM(1,1) model,linear model and non-linear model,to forecast the scale of construction land and each type of land subordinate to it in Chongqing Municipality during the period 2010-2014,respectively.The results show that the construction land in Chongqing Municipality will increase substantially during the period 2010-2014,and the area of each type of land subordinate to construction land will also increase to varying degrees,therefore the land contradictions will become more prominent.
基金supported by the National Natural Science Foundation of China(Grant No.70871082)the Shanghai Leading Academic Discipline Project,China(Grant No.S30504)
文摘This paper studies and predicts the number growth of China's mobile users by using the power-law regression. We find that the number growth of the mobile users follows a power law. Motivated by the data on the evolution of the mobile users, we consider scenarios of self-organization of accelerating growth networks into scale-free structures and propose a directed network model, in which the nodes grow following a power-law acceleration. The expressions for the transient and the stationary average degree distributions are obtained by using the Poisson process. This result shows that the model generates appropriate power-law connectivity distributions. Therefore, we find a power-law acceleration invariance of the scale-free networks. The numerical simulations of the models agree with the analytical results well.
文摘概率预报是由集合预报衍生、包含不确定性信息的客观产品,对业务决策服务有重要的参考价值。传统的邻域集合概率法中,邻域半径固定不变,不符合实际天气过程中牵涉甚广的尺度谱。为此引入基于集合匹配尺度的邻域集合概率法(Neighborhood Ensemble Probability based on Ensemble Agreement Scale,EAS_NEP),并在中国南方典型的梅雨锋暴雨中开展准确性和预报技巧的定量检验评估,以期验证该方法在此类过程中的适用性,并促进其在实际业务中的推广使用。联合扰动初始场、侧边界和物理过程所得到的集合预报能较好地表征实际的预报不确定性,进一步在此基础上比较了格点概率法、不同半径的邻域集合概率法以及EAS_NEP的优劣。试验结果表明,EAS_NEP能根据集合成员间的一致性程度,自适应地调整邻域半径,其在集中型降水中所确定的邻域半径通常大于分散型降水。动态调整的邻域半径既避免了半径过大时的过度平滑与关键信息丢失,又消除了半径较小所带来的奇异点,其空间分布呈阶梯型,空间连续性更优。此外,BS(布莱尔评分)、FSS(分数技巧评分)和ROC曲线(相对作用特征曲线)等定量评估结果也体现出EAS_NEP相比传统方法正的预报技巧,尤其是在分散型降水和高阈值检验时优势更明显。以上结果表明,EAS_NEP在梅雨锋暴雨的预报中具有较好的应用前景,运用在业务中能有效提升概率预报质量。
文摘为提高综合能源系统(integrated energy system,IES)多元负荷预测的精确度,综合考虑多能源相互作用机理、多元负荷耦合特性及气象因素相关性,提出了一种基于多尺度特征提取的IES多元负荷短期联合预测方法。首先,通过最大互信息系数(maximum information coefficient,MIC)研究多元负荷耦合特性及影响因素相关性,选择预测特征;其次,利用变分模态分解技术(variational mode decomposition,VMD)对输入特征进行分解,提升特征纯洁度;最后,采用卷积神经网络-双向长短期记忆神经网络(convolutional neural network-bidirectional long and short-term memory,CNN-BiLSTM)多任务学习模型进行纵向、横向特征选择,注意力(Attention)机制对重要特征差异化提取,实现多尺度特征提取,并利用雪消融优化器(snow ablation optmizer,SAO)对VMD和CNN-BiLSTM多任务学习模型进行超参数优化,以此实现IES多元负荷的联合预测。以美国亚利桑那州实测数据进行实验,结果表明,无论与单一预测方法还是与其他模型相比,所提联合预测方法的均方根误差更低、准确率更高,在IES多元负荷预测中具有更高的精确性和鲁棒性。