期刊文献+
共找到991篇文章
< 1 2 50 >
每页显示 20 50 100
Spectral matching algorithm based on nonsubsampled contourlet transform and scale-invariant feature transform 被引量:4
1
作者 Dong Liang Pu Yan +2 位作者 Ming Zhu Yizheng Fan Kui Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第3期453-459,共7页
A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low freq... A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low frequency image and several high frequency images, and the scale-invariant feature transform is employed to extract feature points from the low frequency im- age. A proximity matrix is constructed for the feature points of two related images. By singular value decomposition of the proximity matrix, a matching matrix (or matching result) reflecting the match- ing degree among feature points is obtained. Experimental results indicate that the proposed algorithm can reduce time complexity and possess a higher accuracy. 展开更多
关键词 point pattern matching nonsubsampled contourlet transform scale-invariant feature transform spectral algorithm.
下载PDF
Active Shape Models Using Scale Invariant Feature Transform
2
作者 史勇红 戚飞虎 +1 位作者 栾红霞 吴国荣 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第6期713-718,共6页
A new active shape models (ASMs) was presented, which is driven by scale invariant feature transform (SIFT) local descriptor instead of normalizing first order derivative profiles in the original formulation, to segme... A new active shape models (ASMs) was presented, which is driven by scale invariant feature transform (SIFT) local descriptor instead of normalizing first order derivative profiles in the original formulation, to segment lung fields from chest radiographs. The modified SIFT local descriptor, more distinctive than the general intensity and gradient features, is used to characterize the image features in the vicinity of each pixel at each resolution level during the segmentation optimization procedure. Experimental results show that the proposed method is more robust and accurate than the original ASMs in terms of an average overlap percentage and average contour distance in segmenting the lung fields from an available public database. 展开更多
关键词 active shape model (ASM) deformable segmentation CHEST RADIOGRAPH scale invariant feature transform (sift) local DESCRIPTOR
下载PDF
Feature Extraction by Multi-Scale Principal Component Analysis and Classification in Spectral Domain 被引量:2
3
作者 Shengkun Xie Anna T. Lawnizak +1 位作者 Pietro Lio Sridhar Krishnan 《Engineering(科研)》 2013年第10期268-271,共4页
Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (... Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (PCA), wavelets transform or Fourier transform methods are often used for feature extraction. In this paper, we propose a multi-scale PCA, which combines discrete wavelet transform, and PCA for feature extraction of signals in both the spatial and temporal domains. Our study shows that the multi-scale PCA combined with the proposed new classification methods leads to high classification accuracy for the considered signals. 展开更多
关键词 MULTI-scale Principal Component Analysis Discrete WAVELET transform feature extraction Signal CLASSIFICATION Empirical CLASSIFICATION
下载PDF
Robust Radiometric Normalization of the near Equatorial Satellite Images Using Feature Extraction and Remote Sensing Analysis 被引量:1
4
作者 Hayder Dibs Shattri Mansor +1 位作者 Noordin Ahmad Nadhir Al-Ansari 《Engineering(科研)》 CAS 2023年第2期75-89,共15页
Relative radiometric normalization (RRN) minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in surface. Scale invariant feature transform (SIFT) has ... Relative radiometric normalization (RRN) minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in surface. Scale invariant feature transform (SIFT) has the ability to automatically extract control points (CPs) and is commonly used for remote sensing images. However, its results are mostly inaccurate and sometimes contain incorrect matching caused by generating a small number of false CP pairs. These CP pairs have high false alarm matching. This paper presents a modified method to improve the performance of SIFT CPs matching by applying sum of absolute difference (SAD) in a different manner for the new optical satellite generation called near-equatorial orbit satellite and multi-sensor images. The proposed method, which has a significantly high rate of correct matches, improves CP matching. The data in this study were obtained from the RazakSAT satellite a new near equatorial satellite system. The proposed method involves six steps: 1) data reduction, 2) applying the SIFT to automatically extract CPs, 3) refining CPs matching by using SAD algorithm with empirical threshold, and 4) calculation of true CPs intensity values over all image’ bands, 5) preforming a linear regression model between the intensity values of CPs locate in reverence and sensed image’ bands, 6) Relative radiometric normalization conducting using regression transformation functions. Different thresholds have experimentally tested and used in conducting this study (50 and 70), by followed the proposed method, and it removed the false extracted SIFT CPs to be from 775, 1125, 883, 804, 883 and 681 false pairs to 342, 424, 547, 706, 547, and 469 corrected and matched pairs, respectively. 展开更多
关键词 Relative Radiometric Normalization scale invariant feature transform Automatically extraction Control Points Sum of Absolute Difference
下载PDF
Face recognition using SIFT features under 3D meshes 被引量:1
5
作者 张诚 谷宇章 +1 位作者 胡珂立 王营冠 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1817-1825,共9页
Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D mes... Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D meshes. After preprocessing, shape index extrema on the 3D facial surface are selected as keypoints in the difference scale space and the unstable keypoints are removed after two screening steps. Then, a local coordinate system for each keypoint is established by principal component analysis(PCA).Next, two local geometric features are extracted around each keypoint through the local coordinate system. Additionally, the features are augmented by the symmetrization according to the approximate left-right symmetry in human face. The proposed method is evaluated on the Bosphorus, BU-3DFE, and Gavab databases, respectively. Good results are achieved on these three datasets. As a result, the proposed method proves robust to facial expression variations, partial external occlusions and large pose changes. 展开更多
关键词 3D face recognition seale-invariant feature transform (sift expression OCCLUSION large pose changes 3D meshes
下载PDF
Target classification using SIFT sequence scale invariants 被引量:5
6
作者 Xufeng Zhu Caiwen Ma +1 位作者 Bo Liu Xiaoqian Cao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第5期633-639,共7页
On the basis of scale invariant feature transform(SIFT) descriptors,a novel kind of local invariants based on SIFT sequence scale(SIFT-SS) is proposed and applied to target classification.First of all,the merits o... On the basis of scale invariant feature transform(SIFT) descriptors,a novel kind of local invariants based on SIFT sequence scale(SIFT-SS) is proposed and applied to target classification.First of all,the merits of using an SIFT algorithm for target classification are discussed.Secondly,the scales of SIFT descriptors are sorted by descending as SIFT-SS,which is sent to a support vector machine(SVM) with radial based function(RBF) kernel in order to train SVM classifier,which will be used for achieving target classification.Experimental results indicate that the SIFT-SS algorithm is efficient for target classification and can obtain a higher recognition rate than affine moment invariants(AMI) and multi-scale auto-convolution(MSA) in some complex situations,such as the situation with the existence of noises and occlusions.Moreover,the computational time of SIFT-SS is shorter than MSA and longer than AMI. 展开更多
关键词 target classification scale invariant feature transform descriptors sequence scale support vector machine
下载PDF
SIFT-based automatic tie-points extraction for airborne InSAR images
7
作者 Dong Xiaotong Han Chunming +1 位作者 Yue Xijuan Zhao Yinghui 《High Technology Letters》 EI CAS 2019年第2期160-165,共6页
The scale-invariant feature transform (SIFT) is often applied to extract tie-points for airborne SAR images. When a pair of airborne SAR images differs with look angles obviously, shadow sizes and shapes of same objec... The scale-invariant feature transform (SIFT) is often applied to extract tie-points for airborne SAR images. When a pair of airborne SAR images differs with look angles obviously, shadow sizes and shapes of same objects will differ obviously. In main and slave SAR images, key-points around shadows often match as tie-points, although they are not homologous points. The phenomenon worsens the performance of SIFT on SAR images. On the basis of SIFT, a modified matching method is proposed to decrease the number of incorrect tie-points. High-resolution airborne SAR images are used in Experiments. Experiment results show that the proposed method is very effective to extract correct tie-points for SAR images. 展开更多
关键词 scale-invariant feature transform(sift) airborne InSAR images tie-points extraction image coregistration
下载PDF
基于SIFT特征点提取的ICP配准算法 被引量:1
8
作者 钱博 宋玺钰 《沈阳理工大学学报》 CAS 2024年第3期48-54,共7页
为解决传统迭代最近点(ICP)算法对点云配准的起始点对选择不佳而导致配准时间长、效率低的问题,提出一种基于尺度不变特征变换(SIFT)特征点提取的ICP点云配准算法(ST-ICP)。首先使用SIFT算法进行原始点云与目标点云的SIFT特征点提取,根... 为解决传统迭代最近点(ICP)算法对点云配准的起始点对选择不佳而导致配准时间长、效率低的问题,提出一种基于尺度不变特征变换(SIFT)特征点提取的ICP点云配准算法(ST-ICP)。首先使用SIFT算法进行原始点云与目标点云的SIFT特征点提取,根据提取特征点完成快速点特征直方图(FPFH)特征运算,通过采样一致性初始配准算法(SAC-IA)搜索对应点对、求解变换矩阵,再进一步运用ICP算法进行点云精细配准。实验结果表明:与ICP算法相比较,ST-ICP算法的配准误差在迭代次数为5次时减小了1.019 cm,迭代次数为10次时减小了0.443 cm;在配准误差达到10^(-2) cm级别时,ST-ICP算法所用时间比传统ICP算法减少了12.829 s。ST-ICP算法优化了对应点对的选择,提升了配准精度和配准效率。 展开更多
关键词 点云配准 迭代最近点算法 尺度不变特征变换 特征点 快速点特征直方图
下载PDF
结合Swin Transformer的多尺度遥感图像变化检测研究
9
作者 刘丽 张起凡 +1 位作者 白宇昂 黄凯烨 《图学学报》 CSCD 北大核心 2024年第5期941-956,共16页
由于地物信息的复杂性及变化检测数据的多元性,遥感图像特征提取的充分性和有效性难以得到保证,导致变化检测方法获取的检测结果可靠性较低。虽然卷积神经网络(CNN)凭借有效提取语义特征的优势,被广泛应用于遥感领域的变化检测之中,但... 由于地物信息的复杂性及变化检测数据的多元性,遥感图像特征提取的充分性和有效性难以得到保证,导致变化检测方法获取的检测结果可靠性较低。虽然卷积神经网络(CNN)凭借有效提取语义特征的优势,被广泛应用于遥感领域的变化检测之中,但卷积操作固有的局部性导致感受野受限,无法捕获时空上的全局信息以至于特征空间对中远距离依赖关系的建模受限。为捕获远距离的语义依赖,提取深层全局语义特征,设计了一种基于Swin Transformer的多尺度特征融合网络SwinChangeNet。首先,SwinChangeNet采用孪生的多级Swin Transformer特征编码器进行远距离上下文建模;其次,编码器中引入特征差异提取模块,计算不同尺度下变化前后的多级特征差异,再通过自适应融合层将多尺度特征图进行融合;最后,引入残差连接和通道注意力机制对融合后的特征信息进行解码,从而生成完整准确的变化图。在CDD和CD_Data_GZ 2个公开数据集上分别与7种经典和前沿变化检测方法进行比较,CDD数据集中本文模型的性能最优,相比于性能第二的模型,F1分数提高了1.11%,精确率提高了2.38%。CD_Data_GZ数据集中本文模型的性能最优,相比于性能第二的模型,F1分数、精确率和召回率分别提高了4.78%,4.32%,4.09%,提升幅度较大。对比实验结果证明了该模型具有更好的检测效果。在消融实验中也证实了模型中各个改进模块的稳定性和有效性。本文模型针对遥感图像变化检测任务,引入了Swin Transformer结构,使网络可以对遥感图像的局部特征和全局特征进行更有效地编码,让检测结果更加准确,同时保证网络在地物要素种类繁多的数据集上容易收敛。 展开更多
关键词 变化检测 孪生网络 Swin transformer 多尺度特征融合 注意力机制 特征差异提取
下载PDF
基于FPDE-SIFT的声呐干涉图像配准方法
10
作者 刘伟陆 周天 +1 位作者 闫振宇 杜伟东 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第1期101-108,共8页
图像配准是声呐进行高精度干涉测量的保障,该文针对水下目标的声呐图像配准,提出了一种基于4阶偏微分方程尺度不变特征变换的声呐干涉图像配准方法。该方法聚焦声呐图像配准的难点,首先基于4阶偏微分方程构建尺度空间,在保持图像细节的... 图像配准是声呐进行高精度干涉测量的保障,该文针对水下目标的声呐图像配准,提出了一种基于4阶偏微分方程尺度不变特征变换的声呐干涉图像配准方法。该方法聚焦声呐图像配准的难点,首先基于4阶偏微分方程构建尺度空间,在保持图像细节的前提下滤除噪声,提高特征提取的准确度;对于残余噪声造成的特征点误检,借助特征点的相位一致性信息加以筛选,精简特征点样本集;最后对特征点匹配策略进行优化,提出改进的快速样本一致性匹配策略剔除特征点的误匹配。算法增加了匹配点对的数量,提高了匹配点对的准确度,实现了声呐干涉图像的精确配准。水池实验和外场试验表明,该文所提出的算法相较现有算法对声呐图像有着更好的适用性,配准后的均方根误差与留一法均方根均小于1像素,达到了亚像素配准精度。 展开更多
关键词 声呐图像配准 尺度不变特征变换 偏微分方程 相位一致性 快速样本一致性
下载PDF
基于改进SIFT算法的城市航拍图像快速拼接方法
11
作者 姬文芳 朱子文 +1 位作者 邓德志 罗江煜 《测试技术学报》 2024年第5期500-505,共6页
城市航拍图像在城市规划、土地管理、环境监测和基础设施建设等领域具有广泛应用。针对无人机航拍高度越高,图像捕获成本越高,图像质量或能见度越低的问题,使用低空无人机来大量捕获图像;针对经典的尺度不变特征转换(SIFT)图像拼接算法... 城市航拍图像在城市规划、土地管理、环境监测和基础设施建设等领域具有广泛应用。针对无人机航拍高度越高,图像捕获成本越高,图像质量或能见度越低的问题,使用低空无人机来大量捕获图像;针对经典的尺度不变特征转换(SIFT)图像拼接算法存在匹配稳定性差、拼接质量差的问题,提出一种改进SIFT算法,通过提取图像金字塔模型,提高了匹配的稳定性;采用RANSAC算法减少局外点的干扰,提高图像拼接质量;采用混合平均加权法消除重叠区域接缝,最终实现了图像快速精准拼接。仿真实验结果显示,改进后的SIFT算法在图像拼接稳定性和质量上均表现较好,能获得良好且完整的拼接图像。 展开更多
关键词 无人机 航拍图像 图像拼接 sift算法
下载PDF
Feature extraction of overlapping hevea leaves:A comparative study
12
作者 Sule T.Anjomshoae Mohd Shafry Bin Mohd Rahim 《Information Processing in Agriculture》 EI 2018年第2期234-245,共12页
Automation of rubber tree clone classification has inspired research into new methods of leaf feature extraction.In current practice,rubber clone inspectors has been using several leaf features to identify clone types... Automation of rubber tree clone classification has inspired research into new methods of leaf feature extraction.In current practice,rubber clone inspectors has been using several leaf features to identify clone types.One of the unique features of rubber tree leaf is palmate leaflets.This characteristic generates different leaflet positions,where the leaves are overlapping or separated.In this research,we propose keypoint extraction and line detection methods to extract shape and axil(angle between petioles)features of leaflet positions.The results of keypoint extraction methods,namely,SIFT,Harris,and FAST,were compared and discussed for shape feature extraction.Next,Hough transformation and boundary-tracing methods were compared to identify the suitable axil detection method.The evaluation result demonstrates the proper keypoint extraction method for shape context and the clear advantages of Hough Transformation in accuracy of angle detection. 展开更多
关键词 Rubber tree leaves feature extraction sift HARRIS FAST Hough transformation Boundary extraction
原文传递
一种基于谱图SIFT的同源频谱监测数据判定方法
13
作者 鲁东生 龙华 《计算机科学》 CSCD 北大核心 2024年第S01期765-771,共7页
随着各类无线电应用的普及,在一定空间范围内,超短波监测过程中的监测数据易受到非同源的同频或邻频信号的影响,仅依靠常规监测中的频谱数据是无法判定信号是否同源的,因而不同监测站点获得的数据缺乏关联性,数据分析结果可能产生误导,... 随着各类无线电应用的普及,在一定空间范围内,超短波监测过程中的监测数据易受到非同源的同频或邻频信号的影响,仅依靠常规监测中的频谱数据是无法判定信号是否同源的,因而不同监测站点获得的数据缺乏关联性,数据分析结果可能产生误导,降低工作效率。依据人工监测的经验,尝试用计算机视觉等技术分析监测数据的频谱图和时频谱图,结合谱图特性引入角度阈值改进SIFT算法的特征点匹配模式,以适应无线电监测数据分析的需要,并提出以图像特征点检测匹配率为前提,利用卡帕值综合评价两种谱图同源判定结果一致性的方法。通过实验模拟和实例验证,两种谱图同源判定结果的卡帕值为0.7605,达到高度一致;同时,所提方法在实践过程中有提高工作效率的作用,具备操作可行性和实际意义。 展开更多
关键词 无线电监测 同源判定 特征点匹配 图像处理 计算机视觉 尺度不变特征转换
下载PDF
Objects Description and Extraction by the Use of Straight Line Segments in Digital Images
14
作者 Vladimir Volkov Rudolf Germer +1 位作者 Alexandr Oneshko Denis Oralov 《Computer Technology and Application》 2011年第12期939-947,共9页
An advanced edge-based method of feature detection and extraction is developed for object description in digital images. It is useful for the comparison of different images of the same scene in aerial imagery, for des... An advanced edge-based method of feature detection and extraction is developed for object description in digital images. It is useful for the comparison of different images of the same scene in aerial imagery, for describing and recognizing categories, for automatic building extraction and for finding the mutual regions in image matching. The method includes directional filtering and searching for straight edge segments in every direction and scale, taking into account edge gradient signs. Line segments are ordered with respect to their orientation and average gradients in the region in question. These segments are used for the construction of an object descriptor. A hierarchical set of feature descriptors is developed, taking into consideration the proposed straight line segment detector. Comparative performance is evaluated on the noisy model and in real aerial and satellite imagery. 展开更多
关键词 Object recognition local descriptors affine and scale invariance edge-based feature detector feature-based imagematching building extraction.
下载PDF
基于SIFT特征点提取算法的三维数字影像重建方法
15
作者 李静 《吉林大学学报(信息科学版)》 CAS 2024年第5期901-907,共7页
针对在数字影像三维重建过程中,由于原始数据中存在噪声和失真等不足,导致特征匹配效率和精度较低的问题,提出基于SIFT(Scale-Invariant Feature Transform)特征点提取算法的三维数字影像重建方法。采用双边滤波算法对数字影像中的环境... 针对在数字影像三维重建过程中,由于原始数据中存在噪声和失真等不足,导致特征匹配效率和精度较低的问题,提出基于SIFT(Scale-Invariant Feature Transform)特征点提取算法的三维数字影像重建方法。采用双边滤波算法对数字影像中的环境噪声实施消除处理,并保留数字影像的边缘信息,提高特征点提取精度;通过尺度不变特征转换(SIFT)算法对其提取特征点,得到数字影像的特征点对;将该特征点对作为初始面片,利用空间目标多视影像密集匹配方法,实现对数字影像的三维重建。实验结果表明,所提方法特征匹配效率和匹配精度高,且降噪能力强,生成的三维重建影像所需平均时间为26.74 ms。 展开更多
关键词 sift算法 双边滤波 去噪 特征匹配 三维重建
下载PDF
基于SIFT-GMLBP的动态图像视觉信息提取研究
16
作者 郑蔚 《现代电子技术》 北大核心 2024年第19期83-86,共4页
为了精确地提取动态图像特征,为动画设计师提供更全面、更准确的视觉信息,文中提出基于SIFT-GMLBP的动态图像视觉信息提取方法。以关键点为像素中心,采用局部二值模式(LBP),通过比较其与邻域的灰度值获取LBP码,实现动态图像局部纹理特... 为了精确地提取动态图像特征,为动画设计师提供更全面、更准确的视觉信息,文中提出基于SIFT-GMLBP的动态图像视觉信息提取方法。以关键点为像素中心,采用局部二值模式(LBP),通过比较其与邻域的灰度值获取LBP码,实现动态图像局部纹理特征捕捉;根据网格化LBP(MLBP)进一步将动态图像中的像素邻域划分为多个网格,使每个网格产生一个LBP值,降低特征向量的维数;结合Gabor滤波器,通过多尺度和多方向的纹理分析,提取动态图像在不同频率和方向上的局部结构信息,整合所有Gabor滤波器响应图像的GMLBP特征,形成包含原始动态图像在不同尺度和方向上的丰富纹理信息的特征向量。实验结果表明:该方法提取的关键点数量和分布非常合理,具有较高的稳定性和动态信息捕获能力,且该方法每秒能够处理高达30帧的图像。 展开更多
关键词 sift LBP MLBP GABOR小波变换 动态图像 局部特征 特征向量 视觉信息提取
下载PDF
基于SIFT和自适应阈值的RANSAC算法的茶饼图像配准研究
17
作者 白晓虎 杨瑞峰 +1 位作者 郭晨霞 李坤 《中国农机化学报》 北大核心 2024年第10期193-198,共6页
在茶饼图像的特征点精匹配中,人工选择阈值会导致误匹配和漏匹配问题,为此提出一种基于F1-Score最大化的方法,自动选取距离阈值的随机抽样一致性(RANSAC)算法进行特征点对筛选。用尺度不变特征变换(SIFT)算法提取茶饼图像的特征点,采用... 在茶饼图像的特征点精匹配中,人工选择阈值会导致误匹配和漏匹配问题,为此提出一种基于F1-Score最大化的方法,自动选取距离阈值的随机抽样一致性(RANSAC)算法进行特征点对筛选。用尺度不变特征变换(SIFT)算法提取茶饼图像的特征点,采用快速近似最近邻(FLANN)算法将异源图像提取出来的特征点进行粗匹配,用改进后的RANSAC算法优化特征点匹配。通过对比不同算法的匹配准确率和均方根误差,证明本文算法在经过旋转、视角以及亮度变换的茶饼图像上能够综合考虑准确率和召回率,自适应地确定一个距离阈值,改进后的RANSAC算法使其准确率最大可以提高18.9%,均方根误差平均降低0.706 pixel,研究证明所提算法能够达到更好的匹配效果。 展开更多
关键词 茶叶 溯源鉴定 特征点匹配 尺度不变特征变换 随机抽样一致性
下载PDF
基于金字塔结构的Transformer边缘检测算法研究
18
作者 段续延 于复兴 索依娜 《现代电子技术》 北大核心 2024年第19期131-138,共8页
针对复杂图像边缘检测任务中多尺度特征提取困难和多尺度特征利用率低的问题,提出一种基于金字塔结构的Transformer边缘检测模型。该模型首先采用擅长根据全局远程依赖关系进行建模的Transformer特征提取主干——PVT网络,取代传统卷积... 针对复杂图像边缘检测任务中多尺度特征提取困难和多尺度特征利用率低的问题,提出一种基于金字塔结构的Transformer边缘检测模型。该模型首先采用擅长根据全局远程依赖关系进行建模的Transformer特征提取主干——PVT网络,取代传统卷积神经网络,解决多尺度特征利用率低的问题;其次,为了充分考虑跨层间上下文特征交互问题,设计了一个专门用来建模和转移上下文知识的模块,用于探索更多显著边缘的判别信息;最后,设计了一个基于注意力机制的多尺度特征增强模块,通过充分挖掘检测对象的多层次和多尺度特征信息,实现对边缘的预测,提高模型边缘检测精度。而且,模型的特征求和与拼接过程不占显存也不占内存,加快了模型的推理速度。在BSDS500和BIPED两个公开数据集上进行大量实验,在BSDS500数据集上边缘检测的ODS值达到0.796;在BIPED数据集上边缘检测的ODS值达到了0.846,实验结果表明该算法在性能上优于对比模型。 展开更多
关键词 边缘检测 transformER 多尺度特征提取 卷积神经网络 PVT 多尺度特征增强
下载PDF
基于混合尺度健康因子的LSTM-Transformer锂电池寿命预测
19
作者 赵昱坡 黄伟 张剑飞 《电子测量技术》 北大核心 2024年第11期112-122,共11页
为提高锂电池剩余使用寿命(RUL)预测的精度,提出基于混合尺度健康因子的集成模型进行RUL预测。针对电池退化数据噪声大,数据量少和非线性特点捕捉不全的问题,首先提出奇异值分解(SVD)对电容信号处理,通过奇异值的能量分布优化变分模态分... 为提高锂电池剩余使用寿命(RUL)预测的精度,提出基于混合尺度健康因子的集成模型进行RUL预测。针对电池退化数据噪声大,数据量少和非线性特点捕捉不全的问题,首先提出奇异值分解(SVD)对电容信号处理,通过奇异值的能量分布优化变分模态分解(VMD)的最佳模态数,降噪重构出直接健康因子SR。提出一种幅度、相位双扰动(APP)的数据增强方法,依据SR数据分布变化,生成人工标记数据ESR,此ESR与电容相关系数均高于0.97。将SR、ESR结合GRA算法择取的3个间接健康因子,建立了更全面的混合尺度寿命特征信息;此外,为了避免单一模型预测的局限性,采用LSTM模型改进了Transformer结构中的解码器,引入新兴Optuna框架分析了影响模型预测精度的关键超参数并对它们进行了优化。最后通过NASA数据进行实验,并与RNN、LSTM、Transformer以及现有模型方法进行比较,结果证明RMSE控制在2.39%以内,MAE在1.59%以内,且预测性能受预测起点的影响小,稳定性更高,95%置信区间更窄。 展开更多
关键词 锂离子电池 混合尺度特征提取 LSTM-transformer模型 APP数据增强 Optuna框架
下载PDF
SIFT算法在机器视觉轨道交通变形监测中的应用分析
20
作者 张邵贺 赵晓峰 +3 位作者 昝海洋 肖博 侯伟 何军 《工程勘察》 2024年第6期52-56,共5页
针对传统人工测量方法不能满足轨道交通结构变形监测精度要求高、实时性要求强等问题,本文提出一种尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)算法,基于该算法可实现机器视觉对轨道交通结构变形实时监测,同时基于MATLA... 针对传统人工测量方法不能满足轨道交通结构变形监测精度要求高、实时性要求强等问题,本文提出一种尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)算法,基于该算法可实现机器视觉对轨道交通结构变形实时监测,同时基于MATLAB语言构建机器视觉轨道交通变形监测系统,并对该系统监测结果进行精度评估。结果表明,基于SIFT算法构建的机器视觉轨道交通变形监测系统与传统测量结果有较好的一致性,总体精度优于1mm。总之,SIFT算法可较好地匹配特征点信息,能够用于实现机器视觉轨道交通结构变形监测,同时机器视觉轨道交通结构变形监测系统在自动化程度、实时性、成本方面具有显著优势,拥有广阔的应用前景。 展开更多
关键词 尺度不变特征变换 机器视觉 轨道交通 变形监测 精度评估
下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部