A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low freq...A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low frequency image and several high frequency images, and the scale-invariant feature transform is employed to extract feature points from the low frequency im- age. A proximity matrix is constructed for the feature points of two related images. By singular value decomposition of the proximity matrix, a matching matrix (or matching result) reflecting the match- ing degree among feature points is obtained. Experimental results indicate that the proposed algorithm can reduce time complexity and possess a higher accuracy.展开更多
A new active shape models (ASMs) was presented, which is driven by scale invariant feature transform (SIFT) local descriptor instead of normalizing first order derivative profiles in the original formulation, to segme...A new active shape models (ASMs) was presented, which is driven by scale invariant feature transform (SIFT) local descriptor instead of normalizing first order derivative profiles in the original formulation, to segment lung fields from chest radiographs. The modified SIFT local descriptor, more distinctive than the general intensity and gradient features, is used to characterize the image features in the vicinity of each pixel at each resolution level during the segmentation optimization procedure. Experimental results show that the proposed method is more robust and accurate than the original ASMs in terms of an average overlap percentage and average contour distance in segmenting the lung fields from an available public database.展开更多
Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (...Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (PCA), wavelets transform or Fourier transform methods are often used for feature extraction. In this paper, we propose a multi-scale PCA, which combines discrete wavelet transform, and PCA for feature extraction of signals in both the spatial and temporal domains. Our study shows that the multi-scale PCA combined with the proposed new classification methods leads to high classification accuracy for the considered signals.展开更多
Relative radiometric normalization (RRN) minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in surface. Scale invariant feature transform (SIFT) has ...Relative radiometric normalization (RRN) minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in surface. Scale invariant feature transform (SIFT) has the ability to automatically extract control points (CPs) and is commonly used for remote sensing images. However, its results are mostly inaccurate and sometimes contain incorrect matching caused by generating a small number of false CP pairs. These CP pairs have high false alarm matching. This paper presents a modified method to improve the performance of SIFT CPs matching by applying sum of absolute difference (SAD) in a different manner for the new optical satellite generation called near-equatorial orbit satellite and multi-sensor images. The proposed method, which has a significantly high rate of correct matches, improves CP matching. The data in this study were obtained from the RazakSAT satellite a new near equatorial satellite system. The proposed method involves six steps: 1) data reduction, 2) applying the SIFT to automatically extract CPs, 3) refining CPs matching by using SAD algorithm with empirical threshold, and 4) calculation of true CPs intensity values over all image’ bands, 5) preforming a linear regression model between the intensity values of CPs locate in reverence and sensed image’ bands, 6) Relative radiometric normalization conducting using regression transformation functions. Different thresholds have experimentally tested and used in conducting this study (50 and 70), by followed the proposed method, and it removed the false extracted SIFT CPs to be from 775, 1125, 883, 804, 883 and 681 false pairs to 342, 424, 547, 706, 547, and 469 corrected and matched pairs, respectively.展开更多
Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D mes...Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D meshes. After preprocessing, shape index extrema on the 3D facial surface are selected as keypoints in the difference scale space and the unstable keypoints are removed after two screening steps. Then, a local coordinate system for each keypoint is established by principal component analysis(PCA).Next, two local geometric features are extracted around each keypoint through the local coordinate system. Additionally, the features are augmented by the symmetrization according to the approximate left-right symmetry in human face. The proposed method is evaluated on the Bosphorus, BU-3DFE, and Gavab databases, respectively. Good results are achieved on these three datasets. As a result, the proposed method proves robust to facial expression variations, partial external occlusions and large pose changes.展开更多
On the basis of scale invariant feature transform(SIFT) descriptors,a novel kind of local invariants based on SIFT sequence scale(SIFT-SS) is proposed and applied to target classification.First of all,the merits o...On the basis of scale invariant feature transform(SIFT) descriptors,a novel kind of local invariants based on SIFT sequence scale(SIFT-SS) is proposed and applied to target classification.First of all,the merits of using an SIFT algorithm for target classification are discussed.Secondly,the scales of SIFT descriptors are sorted by descending as SIFT-SS,which is sent to a support vector machine(SVM) with radial based function(RBF) kernel in order to train SVM classifier,which will be used for achieving target classification.Experimental results indicate that the SIFT-SS algorithm is efficient for target classification and can obtain a higher recognition rate than affine moment invariants(AMI) and multi-scale auto-convolution(MSA) in some complex situations,such as the situation with the existence of noises and occlusions.Moreover,the computational time of SIFT-SS is shorter than MSA and longer than AMI.展开更多
The scale-invariant feature transform (SIFT) is often applied to extract tie-points for airborne SAR images. When a pair of airborne SAR images differs with look angles obviously, shadow sizes and shapes of same objec...The scale-invariant feature transform (SIFT) is often applied to extract tie-points for airborne SAR images. When a pair of airborne SAR images differs with look angles obviously, shadow sizes and shapes of same objects will differ obviously. In main and slave SAR images, key-points around shadows often match as tie-points, although they are not homologous points. The phenomenon worsens the performance of SIFT on SAR images. On the basis of SIFT, a modified matching method is proposed to decrease the number of incorrect tie-points. High-resolution airborne SAR images are used in Experiments. Experiment results show that the proposed method is very effective to extract correct tie-points for SAR images.展开更多
Automation of rubber tree clone classification has inspired research into new methods of leaf feature extraction.In current practice,rubber clone inspectors has been using several leaf features to identify clone types...Automation of rubber tree clone classification has inspired research into new methods of leaf feature extraction.In current practice,rubber clone inspectors has been using several leaf features to identify clone types.One of the unique features of rubber tree leaf is palmate leaflets.This characteristic generates different leaflet positions,where the leaves are overlapping or separated.In this research,we propose keypoint extraction and line detection methods to extract shape and axil(angle between petioles)features of leaflet positions.The results of keypoint extraction methods,namely,SIFT,Harris,and FAST,were compared and discussed for shape feature extraction.Next,Hough transformation and boundary-tracing methods were compared to identify the suitable axil detection method.The evaluation result demonstrates the proper keypoint extraction method for shape context and the clear advantages of Hough Transformation in accuracy of angle detection.展开更多
An advanced edge-based method of feature detection and extraction is developed for object description in digital images. It is useful for the comparison of different images of the same scene in aerial imagery, for des...An advanced edge-based method of feature detection and extraction is developed for object description in digital images. It is useful for the comparison of different images of the same scene in aerial imagery, for describing and recognizing categories, for automatic building extraction and for finding the mutual regions in image matching. The method includes directional filtering and searching for straight edge segments in every direction and scale, taking into account edge gradient signs. Line segments are ordered with respect to their orientation and average gradients in the region in question. These segments are used for the construction of an object descriptor. A hierarchical set of feature descriptors is developed, taking into consideration the proposed straight line segment detector. Comparative performance is evaluated on the noisy model and in real aerial and satellite imagery.展开更多
基金supported by the National Natural Science Foundation of China (6117212711071002)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education (20113401110006)the Innovative Research Team of 211 Project in Anhui University (KJTD007A)
文摘A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low frequency image and several high frequency images, and the scale-invariant feature transform is employed to extract feature points from the low frequency im- age. A proximity matrix is constructed for the feature points of two related images. By singular value decomposition of the proximity matrix, a matching matrix (or matching result) reflecting the match- ing degree among feature points is obtained. Experimental results indicate that the proposed algorithm can reduce time complexity and possess a higher accuracy.
基金The National Natural Science Foundation of China(No60271033)
文摘A new active shape models (ASMs) was presented, which is driven by scale invariant feature transform (SIFT) local descriptor instead of normalizing first order derivative profiles in the original formulation, to segment lung fields from chest radiographs. The modified SIFT local descriptor, more distinctive than the general intensity and gradient features, is used to characterize the image features in the vicinity of each pixel at each resolution level during the segmentation optimization procedure. Experimental results show that the proposed method is more robust and accurate than the original ASMs in terms of an average overlap percentage and average contour distance in segmenting the lung fields from an available public database.
文摘Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (PCA), wavelets transform or Fourier transform methods are often used for feature extraction. In this paper, we propose a multi-scale PCA, which combines discrete wavelet transform, and PCA for feature extraction of signals in both the spatial and temporal domains. Our study shows that the multi-scale PCA combined with the proposed new classification methods leads to high classification accuracy for the considered signals.
文摘Relative radiometric normalization (RRN) minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in surface. Scale invariant feature transform (SIFT) has the ability to automatically extract control points (CPs) and is commonly used for remote sensing images. However, its results are mostly inaccurate and sometimes contain incorrect matching caused by generating a small number of false CP pairs. These CP pairs have high false alarm matching. This paper presents a modified method to improve the performance of SIFT CPs matching by applying sum of absolute difference (SAD) in a different manner for the new optical satellite generation called near-equatorial orbit satellite and multi-sensor images. The proposed method, which has a significantly high rate of correct matches, improves CP matching. The data in this study were obtained from the RazakSAT satellite a new near equatorial satellite system. The proposed method involves six steps: 1) data reduction, 2) applying the SIFT to automatically extract CPs, 3) refining CPs matching by using SAD algorithm with empirical threshold, and 4) calculation of true CPs intensity values over all image’ bands, 5) preforming a linear regression model between the intensity values of CPs locate in reverence and sensed image’ bands, 6) Relative radiometric normalization conducting using regression transformation functions. Different thresholds have experimentally tested and used in conducting this study (50 and 70), by followed the proposed method, and it removed the false extracted SIFT CPs to be from 775, 1125, 883, 804, 883 and 681 false pairs to 342, 424, 547, 706, 547, and 469 corrected and matched pairs, respectively.
基金Project(XDA06020300)supported by the"Strategic Priority Research Program"of the Chinese Academy of SciencesProject(12511501700)supported by the Research on the Key Technology of Internet of Things for Urban Community Safety Based on Video Sensor networks
文摘Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D meshes. After preprocessing, shape index extrema on the 3D facial surface are selected as keypoints in the difference scale space and the unstable keypoints are removed after two screening steps. Then, a local coordinate system for each keypoint is established by principal component analysis(PCA).Next, two local geometric features are extracted around each keypoint through the local coordinate system. Additionally, the features are augmented by the symmetrization according to the approximate left-right symmetry in human face. The proposed method is evaluated on the Bosphorus, BU-3DFE, and Gavab databases, respectively. Good results are achieved on these three datasets. As a result, the proposed method proves robust to facial expression variations, partial external occlusions and large pose changes.
基金supported by the National High Technology Research and Development Program (863 Program) (2010AA7080302)
文摘On the basis of scale invariant feature transform(SIFT) descriptors,a novel kind of local invariants based on SIFT sequence scale(SIFT-SS) is proposed and applied to target classification.First of all,the merits of using an SIFT algorithm for target classification are discussed.Secondly,the scales of SIFT descriptors are sorted by descending as SIFT-SS,which is sent to a support vector machine(SVM) with radial based function(RBF) kernel in order to train SVM classifier,which will be used for achieving target classification.Experimental results indicate that the SIFT-SS algorithm is efficient for target classification and can obtain a higher recognition rate than affine moment invariants(AMI) and multi-scale auto-convolution(MSA) in some complex situations,such as the situation with the existence of noises and occlusions.Moreover,the computational time of SIFT-SS is shorter than MSA and longer than AMI.
基金Supported by the National Key Research and Development Program of China(No.2016YFB0502502)the Special Research and Trial Production Project of Sanya(No.sy17xs0113)
文摘The scale-invariant feature transform (SIFT) is often applied to extract tie-points for airborne SAR images. When a pair of airborne SAR images differs with look angles obviously, shadow sizes and shapes of same objects will differ obviously. In main and slave SAR images, key-points around shadows often match as tie-points, although they are not homologous points. The phenomenon worsens the performance of SIFT on SAR images. On the basis of SIFT, a modified matching method is proposed to decrease the number of incorrect tie-points. High-resolution airborne SAR images are used in Experiments. Experiment results show that the proposed method is very effective to extract correct tie-points for SAR images.
文摘Automation of rubber tree clone classification has inspired research into new methods of leaf feature extraction.In current practice,rubber clone inspectors has been using several leaf features to identify clone types.One of the unique features of rubber tree leaf is palmate leaflets.This characteristic generates different leaflet positions,where the leaves are overlapping or separated.In this research,we propose keypoint extraction and line detection methods to extract shape and axil(angle between petioles)features of leaflet positions.The results of keypoint extraction methods,namely,SIFT,Harris,and FAST,were compared and discussed for shape feature extraction.Next,Hough transformation and boundary-tracing methods were compared to identify the suitable axil detection method.The evaluation result demonstrates the proper keypoint extraction method for shape context and the clear advantages of Hough Transformation in accuracy of angle detection.
文摘An advanced edge-based method of feature detection and extraction is developed for object description in digital images. It is useful for the comparison of different images of the same scene in aerial imagery, for describing and recognizing categories, for automatic building extraction and for finding the mutual regions in image matching. The method includes directional filtering and searching for straight edge segments in every direction and scale, taking into account edge gradient signs. Line segments are ordered with respect to their orientation and average gradients in the region in question. These segments are used for the construction of an object descriptor. A hierarchical set of feature descriptors is developed, taking into consideration the proposed straight line segment detector. Comparative performance is evaluated on the noisy model and in real aerial and satellite imagery.