期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Scaled Boundary Finite Element Analysis of Wave Passing A Submerged Breakwater 被引量:3
1
作者 曹凤帅 滕斌 《China Ocean Engineering》 SCIE EI 2008年第2期241-251,共11页
The scaled boundary finite element method (SBFEM) is a novel semi-analytical technique combining the advantage of the finite element method (FEM) and the boundary element method (BEM) with its unique properties.... The scaled boundary finite element method (SBFEM) is a novel semi-analytical technique combining the advantage of the finite element method (FEM) and the boundary element method (BEM) with its unique properties. In this paper, the SBFEM is used for computing wave passing submerged breakwaters, and the reflection coeffcient and transmission coefficient are given for the case of wave passing by a rectangular submerged breakwater, a rigid submerged barrier breakwater and a trapezium submerged breakwater in a constant water depth. The results are compared with the analytical solution and experimental results. Good agreement is obtained. Through comparison with the results using the dual boundary element method (DBEM), it is found that the SBFEM can obtain higher accuracy with fewer elements. Many submerged breakwaters with different dimensions are computed by the SBFEM, and the changing character of the reflection coeffcient and the transmission coefficient are given in the current study. 展开更多
关键词 scaled boundary finite element method (SBFEM) potential flow wave action submerged breakwater reflection coeffwien transmission coeffwient
下载PDF
Dynamic interaction numerical models in the time domain based on the high performance scaled boundary finite element method 被引量:2
2
作者 Li Jianbo Liu Jun Lin Gao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第4期541-546,共6页
Consideration of structure-foundation-soil dynamic interaction is a basic requirement in the evaluation of the seismic safety of nuclear power facilities. An efficient and accurate dynamic interaction numerical model ... Consideration of structure-foundation-soil dynamic interaction is a basic requirement in the evaluation of the seismic safety of nuclear power facilities. An efficient and accurate dynamic interaction numerical model in the time domain has become an important topic of current research. In this study, the scaled boundary finite element method (SBFEM) is improved for use as an effective numerical approach with good application prospects. This method has several advantages, including dimensionality reduction, accuracy of the radial analytical solution, and unlike other boundary element methods, it does not require a fundamental solution. This study focuses on establishing a high performance scaled boundary finite element interaction analysis model in the time domain based on the acceleration unit-impulse response matrix, in which several new solution techniques, such as a dimensionless method to solve the interaction force, are applied to improve the numerical stability of the actual soil parameters and reduce the amount of calculation. Finally, the feasibility of the time domain methods are illustrated by the response of the nuclear power structure and the accuracy of the algorithms are dynamically verified by comparison with the refinement of a large-scale viscoelastic soil model. 展开更多
关键词 time domain analysis dynamic interaction acceleration impulse response function scaled boundary finiteelement method viscoelastic boundary
下载PDF
A scaled boundary node method applied to two-dimensional crack problems 被引量:2
3
作者 陈莘莘 李庆华 刘应华 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第11期55-62,共8页
A boundary-type meshless method called the scaled boundary node method (SBNM) is developed to directly evaluate mixed mode stress intensity factors (SIFs) without extra post-processing. The SBNM combines the scale... A boundary-type meshless method called the scaled boundary node method (SBNM) is developed to directly evaluate mixed mode stress intensity factors (SIFs) without extra post-processing. The SBNM combines the scaled boundary equations with the moving Kriging (MK) interpolation to retain the dimensionality advantage of the former and the meshless attribute of the latter. As a result, the SBNM requires only a set of scattered nodes on the boundary, and the displacement field is approximated by using the MK interpolation technique, which possesses the 5 function property. This makes the developed method efficient and straightforward in imposing the essential boundary conditions, and no special treatment techniques are required. Besides, the SBNM works by weakening the governing differential equations in the circumferential direction and then solving the weakened equations analytically in the radial direction. Therefore, the SBNM permits an accurate representation of the singularities in the radial direction when the scaling center is located at the crack tip. Numerical examples using the SBNM for computing the SIFs are presented. Good agreements with available results in the literature are obtained. 展开更多
关键词 meshless method scaled boundary node method moving Kriging interpolation stressintensity factor
下载PDF
Application of scaled boundary finite element method in static and dynamic fracture problems 被引量:2
4
作者 Zhenjun Yang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第3期243-256,共14页
The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special fe... The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special features as well. One of the most prominent advantages is its capability of calculating stress intensity factors (SIFs) directly from the stress solutions whose singularities at crack tips are analytically represented. This advantage is taken in this study to model static and dynamic fracture problems. For static problems, a remeshing algorithm as simple as used in the BEM is developed while retaining the generality and flexibility of the FEM. Fully-automatic modelling of the mixed-mode crack propagation is then realised by combining the remeshing algorithm with a propagation criterion. For dynamic fracture problems, a newly developed series-increasing solution to the SBFEM governing equations in the frequency domain is applied to calculate dynamic SIFs. Three plane problems are modelled. The numerical results show that the SBFEM can accurately predict static and dynamic SIFs, cracking paths and load-displacement curves, using only a fraction of degrees of freedom generally needed by the traditional finite element methods. 展开更多
关键词 scaled boundary finite element method Dynamic stress intensity factors Mixed-mode crack propagation Remeshing algorithm Linear elastic fracture mechanics
下载PDF
A New Formulation of the Scaled Boundary Finite Element Method for Heterogeneous Media:Application to Heat Transfer Problems
5
作者 Nima Noormohammadi Nazanin Pirhaji Khouzani 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第2期285-296,共12页
The solution to heat transfer problems in two-dimensional heterogeneous media is attended based on the scaled boundary finite element method(SBFEM)coupled with equilibrated basis functions(EqBFs).The SBFEM reduces the... The solution to heat transfer problems in two-dimensional heterogeneous media is attended based on the scaled boundary finite element method(SBFEM)coupled with equilibrated basis functions(EqBFs).The SBFEM reduces the model order by scaling the boundary solution onto the inner element.To this end,tri-lateral elements are emanated from a scaling center,followed by the development of a semi-analytical solution along the radial direction and a finite element solution along the circumferential/boundary direction.The discretization is thus limited to the boundaries of the model,and the semi-analytical radial solution is found through the solution of an eigenvalue problem,which restricts the methods’applicability to heterogeneous media.In this research,we first extracted the SBFEM formulation considering the heterogeneity of the media.Then,we replaced the semi-analytical radial solution with the EqBFs and removed the eigenvalue solution step from the SBFEM.The varying coefficients of the partial differential equation(PDE)resulting from the heterogeneity of the media are replaced by a finite series in the radial and circumferential directions of the element.A weighted residual approach is applied to the radial equation.The equilibrated radial solution series is used in the new formulation of the SBFEM. 展开更多
关键词 scaled boundary finite element method Equilibrated basis functions Heat transfer
原文传递
COMPUTER COMPUTATION OF THE METHOD OF MULTIPLE SCALES-DIRICHLET PROBLEM FOR A CLASS OF SYSTEM OF NONLINEAR DIFFERENTIAL EQUATIONS
6
作者 谢腊兵 江福汝 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2003年第11期1264-1272,共9页
The method of boundary layer with multiple scales and computer algebra were applied to study the asymptotic behavior of solution of boundary value problems for a class of system of nonlinear differential equations . T... The method of boundary layer with multiple scales and computer algebra were applied to study the asymptotic behavior of solution of boundary value problems for a class of system of nonlinear differential equations . The asymptotic expansions of solution were constructed. The remainders were estimated. And an example was analysed. It provides a new foreground for the application of the method of boundary layer with multiple scales . 展开更多
关键词 system of nonlinear differential equation boundary value problem method of boundary layer with multiple scale computer algebra asymptotic solution
下载PDF
Evaluation of Stress Intensity Factors for Multiple Cracked Circular Disks Under Crack Surface Tractions with SBFEM 被引量:3
7
作者 刘钧玉 林皋 +1 位作者 李晓川 徐凤琳 《China Ocean Engineering》 SCIE EI CSCD 2013年第3期417-426,共10页
Stress intensity factors (SIFs) for the cracked circular disks under different distributing surface tractions are evaluated with the scaled boundary finite element method (SBFEM). In the SBFEM, the analytical adva... Stress intensity factors (SIFs) for the cracked circular disks under different distributing surface tractions are evaluated with the scaled boundary finite element method (SBFEM). In the SBFEM, the analytical advantage of the solution in the radial direction allows SIFs to be directly determined from its definition, therefore no special crack-tip treatment is necessary. Furthermore anisotropic material behavior can be treated easily. Different distributions of surface tractions are considered for the center and double-edge-cracked disks. The benchmark examples are modeled and an excellent agreement between the results in the present study and those in published literature is found. It shows that SBFEM is effective and possesses high accuracy. The SIFs of the cracked orthotropic material circular disks subjected to different surface tractions are also evaluated. The technique of substructure is applied to handle the multiple cracks problem. 展开更多
关键词 stress intensity factors scaled boundary finite element method circular disk orthotropic material surfacetraction
下载PDF
Evaluation of Stress Intensity Factors Subjected to Arbitrarily Distributed Tractions on Crack Surfaces 被引量:3
8
作者 刘钧玉 林皋 《China Ocean Engineering》 SCIE EI 2007年第2期293-303,共11页
The stress intensity factors (SIF) considering arbitrarily distributed surface tractions are evaluated based on the sealed boundary finite element method (SBFEM). The semi-analytical solving process for the stress... The stress intensity factors (SIF) considering arbitrarily distributed surface tractions are evaluated based on the sealed boundary finite element method (SBFEM). The semi-analytical solving process for the stress intensity factors including the effects of surface tractions is presented. Provided are the numerical examples for the evaluation of mode I and Ⅱ stress intensity factors with linear and non-linear distributing forces loaded on the crack surfaces. The crack problems of anisotropy and bimaterial interface are also studied and the stress intensity factors of single-edge-cracked orthotropic material and bi-material interface problems with surface tractions are calculated. Comparisons with the analytical solutions show that the proposed approach is effective and possesses high accuracy. 展开更多
关键词 stress intensity factor scaled boundary finite element method surface tractions anisotropic materials bimaterial interface
下载PDF
A seismic free field input model for FE-SBFE coupling in time domain 被引量:2
9
作者 阎俊义 金峰 +2 位作者 徐艳杰 王光纶 张楚汉 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2003年第1期51-58,共8页
A seismic free field input formulation of the coupling procedure of the finite elelnent(FE)and the scaled boundary finite-element(SBFE)is proposed to perform the unbounded soil-structure interaction analysis in time d... A seismic free field input formulation of the coupling procedure of the finite elelnent(FE)and the scaled boundary finite-element(SBFE)is proposed to perform the unbounded soil-structure interaction analysis in time domain. Based on the substructure technique,seismic excitation of the soil-structure system is represented by the free-field motion of an elastic half-space.To reduce the computational effort,the acceleration unit-impulse response function of the unbounded soil is decomposed into two functions:linear and residual.The latter converges to zero and can be truncated as required. With the prescribed tolerance parameter,the balance between accuracy and effMency of the procedure can be controlled. The validity of the model is verified by the scattering analysis of a hemi-spherical canyon subjected to plane harmonic P,SV and SH wave incidence.Numerical results show that the new procedure is very efficient for seismic problems within a nor- real range of frequency.The coupling procedure presented herein can be applied to linear and nonlinear earthquake re- sponse analysis of practical structures which are built on unbounded soil. 展开更多
关键词 soil-structure interaction scaled boundary finite-element seismic excitation time domain
下载PDF
A Temporally Piecewise Adaptive Scaled Boundary Finite Element Method for Solving the Fuzzy Uncertain Viscoelastic Problems 被引量:1
10
作者 Qiwen Xue Jing Wang +2 位作者 Yiqian He Haitian Yang Xiuyun Du 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2018年第4期459-469,共11页
The numerical solutions for uncertain viscoelastic problems have important theo- retical and practical significance. The paper develops a new approach by combining the scaled boundary finite element method (SBFEM) a... The numerical solutions for uncertain viscoelastic problems have important theo- retical and practical significance. The paper develops a new approach by combining the scaled boundary finite element method (SBFEM) and fuzzy arithmetic. For the viscoelastic problems with zero uncertainty, the SBFEM and the temporally piecewise adaptive algorithm is employed in the space domain and the time domain, respectively, in order to provide an accurate semi- analytical boundary-based approach and to ensure the accuracy of discretization in the time domain with different sizes of time step at the same time. The fuzzy arithmetic is used to address the uncertainty analysis of viscoelastic material parameters, and the transformation method is used for computation with the advantages of effectively avoiding overestimation and reducing the computational costs. Numerical examples are provided to test the performance of the proposed method. By comparing with the analytical solutions and the Monte Carlo method, satisfactory results are achieved. 展开更多
关键词 VISCOELASTICITY Uncertainty scaled boundary finite element Fuzzy arithmetic
原文传递
Short-Crested Waves Interaction with A Concentric Porous Cylinder System with Partially Porous Outer Cylinder
11
作者 刘俊 林皋 李建波 《China Ocean Engineering》 SCIE EI 2012年第2期217-234,共18页
In this paper, based on the linear wave theory, the interaction of short-crested waves with a concentric dual cylindrical system with a partially porous outer cylinder is studied by using the scaled boundary finite el... In this paper, based on the linear wave theory, the interaction of short-crested waves with a concentric dual cylindrical system with a partially porous outer cylinder is studied by using the scaled boundary finite element method (SBFEM), which is a novel semi-analytical method with the advantages of combining the finite element method (FEM) with the boundary element method (BEM). The whole solution domain is divided into one unbounded sub-domain and one bounded sub-domain by the exterior cylinder. By weakening the governing differential equation in the circumferential direction, the SBFEM equations for both domains can be solved analytically in the radial direction. Only the boundary on the circumference of the exterior porous cylinder is discretized with curved surface finite elements. Meanwhile, by introducing a variable porous-effect parameter G, non-homogeneous materials caused by the complex configuration of the exterior cylinder are modeled without additional efforts. Comparisons clearly demonstrate the excellent accuracy and computational efficiency associated with the present SBFEM. The effects of the wide range wave parameters and the structure configuration are examined. This parametric study will help determine the various hydrodynamic effects of the concentric porous cylindrical structure. 展开更多
关键词 scaled boundary finite element method short-crested waves wave diffraction dual porous cylinders wave-structure interaction
下载PDF
MODE III 2-D FRACTURE ANALYSIS BY THE SCALED BOUNDARY FINITE ELEMENT METHOD
12
作者 Shenshen Chen Qinghua Li +1 位作者 Yinghua Liu Zhiqing Xue 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2013年第6期619-628,共10页
The scaled boundary finite element method (SBFEM) is a novel semi-analytical technique that combines the advantages of the finite element method and the boundary element method with unique properties of its own. Thi... The scaled boundary finite element method (SBFEM) is a novel semi-analytical technique that combines the advantages of the finite element method and the boundary element method with unique properties of its own. This method has proven very efficient and accurate for determining the stress intensity factors (SIFs) for mode I and mode II two-dimensional crack problems. One main reason is that the SBFEM has a unique capacity of analytically representing the stress singularities at the crack tip. In this paper the SBFEM is developed for mode III (out of plane deformation) two-dimensional fracture anMysis. In addition, cubic B-spline functions are employed in this paper for constructing the shape functions in the circumferential direction so that higher continuity between elements is obtained. Numerical examples are presented at the end to demonstrate the simplicity and accuracy of the present approach for mode Ⅲ two-dimensional fracture analysis. 展开更多
关键词 fracture mechanics scaled boundary finite element method mode stress in- tensity factors
原文传递
THE SYMMETRIC POSITIVE SOLUTIONS OF 2n-ORDER BOUNDARY VALUE PROBLEMS ON TIME SCALES
13
作者 Yangyang Yu Linlin Wang Yonghong Fan 《Annals of Applied Mathematics》 2016年第3期311-321,共11页
In this paper, we are concerned with the symmetric positive solutions of a 2n-order boundary value problems on time scales. By using induction principle,the symmetric form of the Green's function is established. In o... In this paper, we are concerned with the symmetric positive solutions of a 2n-order boundary value problems on time scales. By using induction principle,the symmetric form of the Green's function is established. In order to construct a necessary and sufficient condition for the existence result, the method of iterative technique will be used. As an application, an example is given to illustrate our main result. 展开更多
关键词 symmetric positive solutions boundary value problems induction principle time scales iterative technique
原文传递
Validated scale-up procedure to predict blockage condition for fluidized dense-phase pneumatic conveying systems 被引量:2
14
作者 G.Setia S.S.Mallick +1 位作者 P.W.Wypych Renhu Pan 《Particuology》 SCIE EI CAS CSCD 2013年第6期657-663,共7页
This paper presents results of an ongoing investigation into modelling fluidized dense-phase pneumatic conveying of powders. For the reliable design of dense-phase pneumatic conveying systems, an accurate estimation o... This paper presents results of an ongoing investigation into modelling fluidized dense-phase pneumatic conveying of powders. For the reliable design of dense-phase pneumatic conveying systems, an accurate estimation of the blockage boundary condition or the minimum transport velocity requirement is of sig- nificant importance. The existing empirical models for fine powder conveying in fluidized dense-phase mode are either based on only a particular pipeline and product or have not been tested for their accuracy under a wide range of scale-up conditions. In this paper, a validated test design procedure has been devel- oped to accurately scale-up the blockage boundary with the help of a modelling format that employs solids loading ratio and Froude number at pipe inlet conditions using conveying data of two different samples of fly ash, electro-static precipitation (ESP) dust and cement (particle densities: 2197-3637 kgJm3; loose poured bulk densities: 634-1070kg/m3; median size: 7-30 l^m). The developed models (in power func- tion format) have been used to predict the blockage boundary for larger diameter and longer pipelines (e.g. models based on 69 mm I.D. ~ 168 m long pipe have been scaled up to 105 mm I.D. and 554 m length). The predicted blockage boundaries for the scale-up conditions were found to provide better accuracy compared to the existing models. 展开更多
关键词 Fluidized dense-phase Pneumatic conveying Blockage boundary Minimum conveying velocity scale up
原文传递
An SBFEM-Based Model for Hydraulic Fracturing in Quasi-Brittle Materials 被引量:1
15
作者 F. Yao Z.J. Yang Y.J. Hu 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2018年第4期416-432,共17页
A numerical model based on the scaled boundary finite element method is devel- oped to simulate the hydraulic fracturing in concrete-like quasi-brittle materials using cohesive interface elements. The shadow domain me... A numerical model based on the scaled boundary finite element method is devel- oped to simulate the hydraulic fracturing in concrete-like quasi-brittle materials using cohesive interface elements. The shadow domain method developed previously (Yang and Deeks in Eng Fract Mech 143(4):333 354, 2007) is extended to consider crack-width-dependent hydraulic pres- sure and cohesive traction, so that the stress intensity factors caused by both crack-face forces are semi-analytically calculated separately in the same way. The crack propagation is determined by the criterion of KI ≥ 0, and the propagation direction by the linear elastic fracture mechanics criteria. Two examples of concrete structures are modeled, and the results are in good agreement with the experimental data and others numerical results. 展开更多
关键词 scaled boundary finite element method Hydraulic fracture Cohesive crackmodel Crack propagation
原文传递
The Static Solution for the Layered Piezoelectric Bounded Domain with Side Face Load by the Modified SBFEM
16
作者 Shan Lu Jun Liu +2 位作者 Gao Lin Zihua Zhang Pengchong Zhang 《Advances in Applied Mathematics and Mechanics》 SCIE 2018年第1期209-241,共33页
The static response of two-dimensional horizontal layered piezoelectric bounded domain with side face load was investigated.In this paper,the modified scaled boundary finite element method(SBFEM)is provided as an effe... The static response of two-dimensional horizontal layered piezoelectric bounded domain with side face load was investigated.In this paper,the modified scaled boundary finite element method(SBFEM)is provided as an effective semi analytical methodology.The method is used to solve the static problem for the layered piezoelectric bounded domain.The scaling line definition extends the SBFEM to be more suitable for analyzing the multilayered piezoelectric bounded domain.It avoids the limitations of original SBFEM in modeling the horizontal layered bounded domain.The modified SBFEM governing equation with piezoelectric medium is derived by introducing Duality variable in the Hamilton system.This derivation technology makes the progress be concise.The novel displacement and electric governing equations of the modified SBFEM is given together by the first time.The node forces can be expressed as power exponent function with radial coordinate by introducing the auxiliary variable and using the eigenvalue decomposition.The novel modified SBFEM solution of layered bounded domain with piezoelectric medium is solved.The new power expansion function of layered piezoelectric medium with side face load is proposed.This technology significantly extends the application range of modified SBFEM.The novel treatment of side face load for the layered piezoelectric bounded domain is proposed.Numerical studies are conducted to demonstrate the accuracy of proposed technique in handling with the static problem of layered bounded domain with piezoelectric medium for side face load.The influence of the side face load type and depth are discussed in detail. 展开更多
关键词 Modified scaled boundary finite element method piezoelectric medium side face load layered bounded domain
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部