期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Applications of scale-adaptive simulation technique based on one-equation turbulence model 被引量:6
1
作者 Chang-yue XU Tao ZHOU +1 位作者 Cong-lei WANG Jian-hong SUN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第1期121-130,共10页
A modified scale-adaptive simulation (SAS) technique based on the Spalart- Allmaras (SA) model is proposed. To clarify its capability in prediction of the complex turbulent flow, two typical cases are carried out,... A modified scale-adaptive simulation (SAS) technique based on the Spalart- Allmaras (SA) model is proposed. To clarify its capability in prediction of the complex turbulent flow, two typical cases are carried out, i.e., the subcritical flow past a circular cylinder and the transonic flow over a hemisphere cylinder. For comparison, the same cases are calculated by the detached-eddy simulation (DES), the delayed-detached eddy simulation (DDES), and the XY-SAS approaches. Some typical results including the mean pressure coefficient, velocity, and Reynolds stress profiles are obtained and compared with the experiments. Extensive calculations show that the proposed SAS technique can give better prediction of the massively separated flow and shock/turbulent-boundary-layer interaction than the DES and DDES methods. Furthermore, by the comparison of the XY-SAS model with the present SAS model, some improvements can be obtained. 展开更多
关键词 TURBULENCE detached-eddy simulation scale-adaptive simulation CYLINDER
下载PDF
Analysis on nasal airway by using scale-adaptive simulation combined with standard κ-ω model and 3D printing modeling physical experiment 被引量:1
2
作者 Jiemin Zhan Yangyang Xi +2 位作者 Kay Lin Weiguang Yu Wenqing Hu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2019年第4期215-219,I0006,共6页
The physiological structure of the upper respiratory tract is complex and varies with each individual,and the circulating air has turbulent performance.In this paper,based on computed tomography(CT)medical images publ... The physiological structure of the upper respiratory tract is complex and varies with each individual,and the circulating air has turbulent performance.In this paper,based on computed tomography(CT)medical images published online and the three-dimensional(3D)printing technology,a 3D model of the human upper respiratory tract was reconstructed and an experimental device of the upper respiratory tract was made.We implemented the respiratory experiment and measured the flow rate,and a scale-adaptive κ-ω model is applied for numerical simulation,the results are in good agreement.The flow field during respiratory was analyzed by coronal velocity cross section,vortex line and particle tracks.We found that the relatively strong shear effect happens at the areas of nasal valve and nasopharynx.In the middle and upper nasal tract,vortex line separation occurs and there is significant passage effect.The results indicate that SAS method is effective in studying upper respiratory airflow. 展开更多
关键词 3D PRINTER scale-adaptive SIMULATION Upper RESPIRATORY TRACT Physical experiment
下载PDF
Suppression effect of jet flow on pulsating pressure of cavity using scale-adaptive simulation model
3
作者 YU Peixun BAI Junqiang +2 位作者 GUO Bozhi HAN Xiao HAN Shanshan 《Chinese Journal of Acoustics》 CSCD 2015年第1期67-83,共17页
The suppression of the aerodynamic noise in the cavity has a great significance to solve relevant puzzles of weapon bays. Acoustic field of the standard cavity model is simulated by using the computational fluid dynam... The suppression of the aerodynamic noise in the cavity has a great significance to solve relevant puzzles of weapon bays. Acoustic field of the standard cavity model is simulated by using the computational fluid dynamics technology based on scale-adaptive simulation (SAS) model. The results obtained by the proposed method in this paper show reasonable agreement with experiments. On the basis of this, effect of different jet flow rates on the time-averaged variables, turbulent kinetic energy, root mean square (RMS) of sound pressure, sound sources distribution and the pulsating pressure distribution in the cavity is studied. The analysis shows that the jet flow has great influence on the cavity flow field and the distribution of pulsating pressure RMS by changing the morphology of the shear layer. The most obvious of these measures is spout4 configuration, the influence mainly in the form of reducing the pulsating pressure of the whole cavity and changing the sound pressure level in the far field. The results show that different jet flow rates have different control effects on pulsating pressure in the cavity and sound pressure level in the far field. Furthermore, the jet flow rates and the suppression effect on the pulsating pressure have no linear relation. 展开更多
关键词 flow Suppression effect of jet flow on pulsating pressure of cavity using scale-adaptive simulation model
原文传递
High-fidelity numerical simulation of unsteady cavitating flow around a hydrofoil 被引量:2
4
作者 Nan Xie Yu-meng Tang Yang-wei Liu 《Journal of Hydrodynamics》 SCIE EI CSCD 2023年第1期1-16,共16页
Cavitation is a widespread and detrimental phenomenon in hydraulic machinery, therefore, it requires to be accurately predicted. In this study, large eddy simulation (LES), scale-adaptive simulation (SAS) and grid-ada... Cavitation is a widespread and detrimental phenomenon in hydraulic machinery, therefore, it requires to be accurately predicted. In this study, large eddy simulation (LES), scale-adaptive simulation (SAS) and grid-adaptive simulation (GAS) are employed to investigate the unsteady cavitating flow around a NACA0009 hydrofoil. The prediction accuracy of GAS, SAS, both using the shear-stress transport (SST) k — ω model as baseline turbulence model, is validated by comparing with experimental and LES results. The cavity behaviors and turbulence fields are analyzed systematically. Results show that the GAS gives a more reasonable turbulent viscosity and accurately predicts the periodic evolution of typical vortical structures of cavitating flow, such as tip leakage vortex cavitation, tip separation vortex cavitation, leading-edge cavitation, and trailing-edge vortex. The time-averaged cavity volume, volume fluctuation amplitude, and characteristic frequencies of cavities predicted by the GAS are very closed to the LES, while the SAS fails to accurately capture these cavity characteristics. Furthermore, the local trace criterion is applied to extract the vortical structures and to analyze the swirling patterns of the tip leakage vortex. Multi-scale vortical structures in LES are well identified by local trace criterion. The prediction accuracy of the SAS method for small-scale vortical structures, such as the vortex shedding on the suction side and the vortex rope around the tip leakage vortex, is obviously insufficient, while the GAS has a higher accuracy in predicting vortex shedding. The tip leakage vortex and induced vortex extracted from GAS are also closer to that of LES in both swirling patterns and scale. 展开更多
关键词 Tip leakage vortex cavitation leading-edge cavitation large eddy simulation(LES) grid-adaptive simulation scale-adaptive simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部