期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Surface lurking and interfacial ion release strategy for fabricating a superhydrophobic coating with scaling inhibition 被引量:1
1
作者 Ming-Liang Zhu Hui-Juan Qian +4 位作者 Wei-Hao Fan Chi-Jia Wang Rui-Xia Yuan Qing-He Gao Huai-Yuan Wang 《Petroleum Science》 SCIE CAS CSCD 2022年第6期3068-3079,共12页
The design and manufacture of anti-scaling surface is a prospective way to prevent scaling in oil field.In this work,a novel superhydrophobic Cu^(2+)-loaded and DTPMPA-modified anodized copper oxide(S-Cu^(2+)/D-ACO)co... The design and manufacture of anti-scaling surface is a prospective way to prevent scaling in oil field.In this work,a novel superhydrophobic Cu^(2+)-loaded and DTPMPA-modified anodized copper oxide(S-Cu^(2+)/D-ACO)coating was fabricated by modification of 1H,1H,2H,2H-perfluorodecyltriethoxysilane.The valid storing of scale inhibitors at the coating surface and the interfacial release of Cu^(2+)ions contribute to enhancing the anti-scaling of the S-Cu^(2+)/D-ACO coating.The water contact angle of the S-Cu^(2+)/D-ACO coating is 163.03°and exhibits superhydrophobicity,which makes it difficult for CaCO_(3)to deposit at the surface of the coating.DTPMPA will steadily lurk into the inner space,and Cu^(2+)will be loaded at the interface in the form of the DTPMPA:Cu^(2+)chelate.During the deposition of CaCO_(3),the dynamic release of DTPMPA can be realized by transferring DTPMPA:Cu^(2+)to DTPMPA:Ca^(2+).Interestingly,the released Cu^(2+)hinders the active growth of CaCO_(3).After 48 h of scaling,the mass of CaCO_(3)scale at the S-Cu^(2+)/D-ACO coating surface is only 44.1%that of the anodized copper oxide coating.The excellent anti-scaling performance of the S-Cu^(2+)/D-ACO coating is determined by the synergistic effect of the DTPMPA lurking and dynamic release,as well as the Cu^(2+)inhibition at the interface of superhydrophobic coating and against CaCO_(3)deposition.This research provides a new exploration for designing and fabricating anti-scaling superhydrophobic surface for oil field development. 展开更多
关键词 Copper alloy DTPMPA lurking And dynamic release Cu^(2+)loading and chelating CaCO3 deposition Scale inhibition mechanism
下载PDF
Diffusion tensor tractography studies on mechanisms of recovery of injured fornix 被引量:3
2
作者 Sung Ho Jang Han Do Lee 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第10期1742-1744,共3页
The fornix,which connects the medial temporal lobe and the medial diencephalon,is involved in episodic memory as an important part of the Papez circuit.The mechanisms of recovery of an injured fornix revealed by diffu... The fornix,which connects the medial temporal lobe and the medial diencephalon,is involved in episodic memory as an important part of the Papez circuit.The mechanisms of recovery of an injured fornix revealed by diffusion tensor tractography in the five studies are summarized as follows:1) recovery through the nerve tract from an injured fornical crus to the medial temporal lobe via the normal pathway of the fornical crus;2)recovery through the nerve tract originating from an ipsi-lesional fornical body connected to the ipsi-lesional medial temporal lobe via the splenium of the corpus callosum;3) recovery through the nerve tract from the ipsi-lesional fornical body extending to the contra-lesional medial temporal lobe via the splenium of the corpus callosum;4) recovery through the nerve tract originating from the ipsi-lesional fornical column connected to the ipsi-lesional medial temporal lobe;and 5) recovery through the nerve tract originating from the contra-lesional fornical column connected to the ipsi-lesional medial temporal lobe via the contra-lesional medial temporal lobe and the splenium of the corpus callosum.These diffusion tensor tractography studies on mechanisms of recovery of injured fornical crus appeared to provide useful information for clinicians caring for patients with brain injury,however,studies on this topic are still in the beginning stages. 展开更多
关键词 nerve regeneration fornix diffusion tensor tractography recovery mechanism memory assessment scale Papez neural regeneration
下载PDF
Timing,scale and mechanism of the destruction of the North China Craton 被引量:214
3
作者 ZHU RiXiang CHEN Ling +1 位作者 WU FuYuan LIU JunLai 《Science China Earth Sciences》 SCIE EI CAS 2011年第6期789-797,共9页
The North China Craton (NCC) is a classical example of ancient destroyed cratons.Since the initiation of the North China Craton Destruction Project by the National Natural Science Foundation of China,numerous studies ... The North China Craton (NCC) is a classical example of ancient destroyed cratons.Since the initiation of the North China Craton Destruction Project by the National Natural Science Foundation of China,numerous studies have been conducted on the timing,scale,and mechanism of this destruction through combined interdisciplinary research.Available data suggest that the destruction occurred mainly in the eastern NCC,whereas the western NCC was only locally modified.The sedimentation,magmatic activities and structural deformation after cratonization at ~1.8 Ga indicate that the NCC destruction took place in the Mesozoic with a peak age of ca 125 Ma.A global comparison suggests that most cratons on Earth are not destroyed,although they have commonly experienced lithospheric thinning;destruction is likely to occur only when the craton has been disturbed by oceanic subduction.The destruction of the NCC was coincident with globally active plate tectonics and high mantle temperatures during the Cretaceous.The subducted Pacific slab destabilized mantle convection beneath the eastern NCC,which resulted in cratonic destruction in the eastern NCC.Delamination and/or thermal-mechanical-chemical erosion resulted from the destabilization of mantle convection. 展开更多
关键词 TIMING scale and mechanism craton destruction North China Craton
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部