The oxygen evolution reaction(OER)is the essential module in energy conversion and storage devices such as electrolyzer,rechargeable metal–air batteries and regenerative fuel cells.The adsorption energy scaling relat...The oxygen evolution reaction(OER)is the essential module in energy conversion and storage devices such as electrolyzer,rechargeable metal–air batteries and regenerative fuel cells.The adsorption energy scaling relations between the reaction intermediates,however,impose a large intrinsic overpotential and sluggish reaction kinetics on OER catalysts.Developing advanced electrocatalysts with high activity and stability based on non-noble metal materials is still a grand challenge.Central to the rational design of novel and high-efficiency catalysts is the development and understanding of quantitative structure–activity relationships,which correlate the catalytic activities with structural and electronic descriptors.This paper comprehensively reviews the benchmark descriptors for OER electrolysis,aiming to give an in-depth understanding on the origins of the electrocatalytic activity of the OER and further contribute to building the theory of electrocatalysis.Meanwhile,the cutting-edge research frontiers for proposing new OER paradigms and crucial strategies to circumvent the scaling relationship are also summarized.Challenges,opportunities and perspectives are discussed,intending to shed some light on the rational design concepts and advance the development of more efficient catalysts for enhancing OER performance.展开更多
Urea-assisted natural seawater electrolysis is an emerging technology that is effective for grid-scale carbon-neutral hydrogen mass production yet challenging.Circumventing scaling relations is an effective strategy t...Urea-assisted natural seawater electrolysis is an emerging technology that is effective for grid-scale carbon-neutral hydrogen mass production yet challenging.Circumventing scaling relations is an effective strategy to break through the bottleneck of natural seawater splitting.Herein,by DFT calculation,we demonstrated that the interface boundaries between Ni_(2)P and MoO_(2) play an essential role in the selfrelaxation of the Ni-O interfacial bond,effectively modulating a coordination number of intermediates to control independently their adsorption-free energy,thus circumventing the adsorption-energy scaling relation.Following this conceptual model,a well-defined 3D F-doped Ni_(2)P-MoO_(2) heterostructure microrod array was rationally designed via an interfacial engineering strategy toward urea-assisted natural seawater electrolysis.As a result,the F-Ni_(2)P-MoO_(2) exhibits eminently active and durable bifunctional catalysts for both HER and OER in acid,alkaline,and alkaline sea water-based electrolytes.By in-situ analysis,we found that a thin amorphous layer of NiOOH,which is evolved from the Ni_(2)P during anodic reaction,is real catalytic active sites for the OER and UOR processes.Remarkable,such electrode-assembled urea-assisted natural seawater electrolyzer requires low voltages of 1.29 and 1.75 V to drive 10 and600 mA cm^(-2)and demonstrates superior durability by operating continuously for 100 h at 100 mA cm^(-2),beyond commercial Pt/C||RuO_(2) and most previous reports.展开更多
The past few decades have seen a resurgence of Interest in biological allometry. Specifically, a number of recent studies has suggested a -4/3 Invariant scaling relationship between mass and density that Is universall...The past few decades have seen a resurgence of Interest in biological allometry. Specifically, a number of recent studies has suggested a -4/3 Invariant scaling relationship between mass and density that Is universally valid for tree-dominated communities, regardless of their phyietic affiliation or habitat. In the present study, we test this scaling relationship using a comprehensive forest biomass database, Including 1 266 plots of six blomes and 17 forest types across China. The present study shows that the scaling exponent of the massdensity relationship varies across different tree-dominated communities and habitats. This great variability In the scaling exponent makes any generalization unwarranted. Although Inappropriate regression methods can lead to flawed estimation of the scaling exponent, inconsistency of theoretical framework and empirical patterns may have undermined the validity of previous work.展开更多
The scaling relationships of elastic-perfectly plastic film/coating materials during sharp indentation have been obtained using dimensional analysis and finite-element modeling. Besides the bulk substrate materials, a...The scaling relationships of elastic-perfectly plastic film/coating materials during sharp indentation have been obtained using dimensional analysis and finite-element modeling. Besides the bulk substrate materials, a wide range of film/coating materials with different ratios in term of the Young’s modulus and yield strength were examined, namely different values of Ef/Esand Yf/Es.Based on these scaling relationships, the substrate effects on indentation response and deformed surface profile of residual imprint are given. Furthermore, the scaling relationship among the work of indentation, reduced elastic modulus and hardness has been found. It is found that the ratio of the indentation hardness to measurement of substrate elastic modulus could be used to characterize the wear resistance of film/coating materials. In addition, a novel method to acquire the intrinsic hardness and elastic modulus of film/coating materials is proposed combined with the well-known 10% critical indentation depth rule, which avoids the error caused by estimating the contact area. This work could be contributed for characterizing the mechanical properties of film/coating materials at micro-and nanoscale.展开更多
The self-assembly of surface-order structures based on the surface wrinkling of stiff film-compliant substrate structures(SFCS)is potentially useful in the fabrication of functional devices,the manufacture of superhyd...The self-assembly of surface-order structures based on the surface wrinkling of stiff film-compliant substrate structures(SFCS)is potentially useful in the fabrication of functional devices,the manufacture of superhydrophobic or self-cleaning surfaces,and so on.Due to the influence of the intrinsic characteristic length(g),the surface wrinkling behavior of SFCS at the micro scale is different from that at the macro scale.In this work,based on the strain gradient theory,a trans-scale surface wrinkling model for SFCS is established.First,the effectiveness of this model is verified by previous experiments.Then,based on the model and dimensional analysis,the effect of g on the surface wrinkling behavior is investigated,and the scaling relationship of surface wrinkling of SFCS at different scales is analyzed.The results show that the influence of g cannot be neglected when the film thickness decreases to the one comparable to g.At the micro scale,g will lead to the increase of the critical wrinkling wavelength and load.In addition,the scaling relationship of surface wrinkling at the micro scale will not follow the traditional one.Our study explains the underlying mechanism of the dissimilarity of surface wrinkling behaviors of SFCS at different scales and lays a theoretical foundation for the precise control of surface-order structures.展开更多
The indentation test is a localized testing technique;therefore,the role of the material size-effect and local non-uniformity is of much importance.The influence of the heterogeneity in size-independent materials has ...The indentation test is a localized testing technique;therefore,the role of the material size-effect and local non-uniformity is of much importance.The influence of the heterogeneity in size-independent materials has been studied previously.The present work detailedly investigated the influence of the material size-effect and heterogeneity(inclusions near the indenter tip)on the indentation hardness using a size-dependent strain gradient plastic theory.And it was found that when considering the material size-ffect,shallow hard inclusions in the heterogeneous materials more significantly enhance the material indentation hardness compared with the size-independent materials which are based on the conventional plastic theory.This hardening effect is be-lieved to be related to the elevation of the load and local constraints of large deformation.The effect of material inhomogeneity mainly comes from the non-uniformity of the structure rather than the inclusion modulus itself especially when the size-effect is involved,and the transition range of the inclusion modulus'influence is pretty narrow.The effect of non-uniformity becomes negligible after the initial inclusion depth is larger than its diameter.The horizontal offset of the indenter from the inclusion is also of much sensitivity to the influence of the heterogeneous indentation.This paper focuses on the scaling relationships in micro-and nanoindentation,the influence of non-uniformity in microscopic materials is studied and supplemented as well.展开更多
Though touted as a potential way to realize clean ammonia synthesis,electrochemical ammonia synthesis is currently limited by its catalytic efficiency.Great effort has been made to find catalysts with improved activit...Though touted as a potential way to realize clean ammonia synthesis,electrochemical ammonia synthesis is currently limited by its catalytic efficiency.Great effort has been made to find catalysts with improved activity toward electrochemical nitrogen reduction reaction(eNRR).Rational screening of catalysts can be facilitated using the volcano relationship between catalytic activity and adsorption energy of an intermediate,namely,the activity descriptor.In this work,we proposeΔG^(*)_(NH_(2))+ΔG^(*)_(NNH)as a combinatorial descriptor,which shows better predictive power than traditional descriptors using the adsorption free energies of single intermediates.The volcano plots based on the combinatorial descriptor exhibits peak activity fixedly at the descriptor value corresponding to the formation free energy of NH3,regardless of the catalyst types;while the descriptor values correspond to the top activities for eNRR on volcano plots based on single descriptors usually vary with the types of catalysts.展开更多
To evaluate patient preferences for sildenafil citrate or tadalafil (PDE-5 inhibitors available for the treatment of erectile dysfunction [ED]) and assess potential reasons for these preferences. Methods: This open...To evaluate patient preferences for sildenafil citrate or tadalafil (PDE-5 inhibitors available for the treatment of erectile dysfunction [ED]) and assess potential reasons for these preferences. Methods: This open-label study was conducted on Korean men taking sildenafil, at least 6 weeks prior to study entry, for ED. Following screening, patients continued sildenafil treatment for 4 weeks, then after a 1-week washout period, switched to tadalafil for 8 weeks. Patients then continued with their treatment of choice during an extension phase. Psychosocial factors (time concern, spontaneity, sexual self-confidence) were evaluated using Psychological and Interpersonal Relation- ship Scales (PAIRS), while timing of dose to sexual attempt patterns were assessed from patient diaries. Results: The present study enrolled 160 Korean men (mean age 55 years) with prior median sildenafil use of 585 days. During the extension phase, 73.7% of patients elected to take tadalafil, whereas 26.3% chose sildenafil (P 〈 0.001). After switching from sildenafil to tadalafil, mean PAIRS time concern scores decreased from 2.54 to 2.42 (P = 0.002), with no statistically significant differences observed between the sildenafil and tadalafil assessment phases in sexual spontaneity and self-confidence scores. Sexual attempts made 〉 4 h to 〈 36 h post-dose occurred in 4.5% of patients during the sildenafil assessment phase compared with 17.5% during the tadalafil assessment phase. Conclusion: After experiencing both sildenafil and tadalafil, the majority of patients exhibited a preference for tadalafil. This preference might be influenced by psychosocial factors, such as decreased time concerns, and a broader window of opportunity available for sexual activity.展开更多
Size hierarchy is a distinct feature of nanogold-catalysts as it can strongly affect their performance in various reactions. We developed a simple method to generate Au n S m nanoclusters of different sizes by thermal...Size hierarchy is a distinct feature of nanogold-catalysts as it can strongly affect their performance in various reactions. We developed a simple method to generate Au n S m nanoclusters of different sizes by thermal treatment of an Au144(PET)60 (PET: phenylethanethiol) parent cluster. These clusters, deposited on activated carbon, exhibit excellent catalytic performance in the hydrochlorination of acetylene. In-situ ultraviolet laser dissociation high-resolution mass spectrometry of the parent cluster in the presence of acetylene revealed a remarkable cluster size-dependence of acetylene adsorption, which is a crucial step in the hydrochlorination. Systematic density functional theory calculations of the reaction pathways on the differently-sized clusters provide deeper insight into the cluster size dependence of the adsorption energies of the reactants and afforded a scaling relationship between the adsorption energy of acetylene and the co-adsorption energies of the reactants (C_(2)H_(2) and HCl), which could enable a qualitative prediction of the optimal Au n S m cluster for the hydrochlorination of acetylene.展开更多
Aims The present study aims(i)to examine if recently reported interspecific shoot-level biomass allocational trade-offs,i.e.isometric trade-offs between leaf mass(LM)and stem mass(SM)and between leaf size and leaf num...Aims The present study aims(i)to examine if recently reported interspecific shoot-level biomass allocational trade-offs,i.e.isometric trade-offs between leaf mass(LM)and stem mass(SM)and between leaf size and leaf number,hold intraspecifically and(ii)to explore whether those scaling relationships are independent of shoot type(i.e.long vs.short shoots).Methods In order to address our questions,we used Fagus sylvatica saplings growing under a broad light range that were sampled in theWestern Carpathians Mountains(Slovakia).Important Findings We found that:(i)intraspecific shoot-level biomass allocational trade-offs differ from those reported interspecifically and that(ii)long and short shoots differ in biomass allocation scaling coefficients.Allometric relationships with slopes statistically smaller than 1.0 or higher than-1.0,were found between SM and LM and between mean leafing intensity and individual leaf mass,respectively,in long shoots.In contrast,isometric scaling was found in short shoots.This suggests that leaf mass in short shoots is unaffected by shoot stem mass,in contrast to long shoots.Short shoots also had a larger fraction of biomass allocated to leaves.Beech shoots,as has been observed in other shoot dimorphic species,are specialized,with short shoots specializing in carbon gain and long shoots in space acquisition.A greater shift in LM than in SM among species during speciation shifting from allometric intraspecific relationships to an isometric interspecific scaling relationship between those traits could explain the discrepancies between the outputs of the present intraspecific study and others similar studies.This study draws attention to the importance of considering shoot types in future studies dealing with allocation rules in species with dimorphic shoots.展开更多
Reverse water gas shift(RWGS)catalysis,a prominent technology for converting CO2 to CO,is emerging to meet the growing demand of global environment.However,the fundamental understanding of the reaction mechanism is hi...Reverse water gas shift(RWGS)catalysis,a prominent technology for converting CO2 to CO,is emerging to meet the growing demand of global environment.However,the fundamental understanding of the reaction mechanism is hindered by the complex nature of the reaction.Herein,microkinetic modeling of RWGS on different metals(i.e.,Co,Ru,Fe,Ni,Cu,Rh,Pd,and Pt)was performed based on the DFT results to provide the mechanistic insights and achieve the catalyst screening.Adsorption energies of the carbon-based species and the oxygen-based species can be correlated to the adsorption energy of carbon and oxygen,respectively.Moreover,oxygen adsorption energy is an excellent descriptor for the barrier of CO2 and CO direct dissociation and the difference in reaction barrier between CO2(or CO)dissociation and hydrogenation.The reaction mechanism varies on various metals.Direct CO2 dissociation is the dominating route on Co,Fe,Ru,Rh,Cu,and Ni,while it competes with the COOH-mediated path on Pt and Pd surface.The eights metals can be divided into two groups based on the degree of rate control analysis for CO production,where CO–O bond cleavage is rate relevant on Pt,Pd,and Cu,and OH–H binding is rate-controlling on Co,Fe,Ru,Ni,and Rh.Both CO-direct dissociation and hydrogen-assisted route to CH4 contribute to the methane formation on Co,Fe,Pt,Pd,Ru,and Rh,despite the significant barrier difference between the two routes.Besides,the specific rate-relevant transition states and intermediates are suggested for methane formation,and thus,the selectivity can be tuned by adjusting the energy.The descriptor(C-and O-formation energy)based microkinetic modeling proposed that the activity trend is Rh~Ni>Pt~Pd>Cu>Co>Ru>Fe,where Fe,Co,Ru,and Ni tends to be oxidized.The predicted activity trend is well consistent with those obtained experimentally.The interpolation concept of adsorption energy was used to identify bimetallic materials for highly active catalysts for RWGS.展开更多
基金support from the U.S.Department of the Army and U.S.Army Future Commandsupport from the U.S.Army Research Laboratory Senior Research Fellowship Program。
文摘The oxygen evolution reaction(OER)is the essential module in energy conversion and storage devices such as electrolyzer,rechargeable metal–air batteries and regenerative fuel cells.The adsorption energy scaling relations between the reaction intermediates,however,impose a large intrinsic overpotential and sluggish reaction kinetics on OER catalysts.Developing advanced electrocatalysts with high activity and stability based on non-noble metal materials is still a grand challenge.Central to the rational design of novel and high-efficiency catalysts is the development and understanding of quantitative structure–activity relationships,which correlate the catalytic activities with structural and electronic descriptors.This paper comprehensively reviews the benchmark descriptors for OER electrolysis,aiming to give an in-depth understanding on the origins of the electrocatalytic activity of the OER and further contribute to building the theory of electrocatalysis.Meanwhile,the cutting-edge research frontiers for proposing new OER paradigms and crucial strategies to circumvent the scaling relationship are also summarized.Challenges,opportunities and perspectives are discussed,intending to shed some light on the rational design concepts and advance the development of more efficient catalysts for enhancing OER performance.
基金supported by the Vietnam National University,Ho Chi Minh City (Grant No.TX2024-50-01)partial supported by National Natural Science Foundation of China (Grant No.22209186)。
文摘Urea-assisted natural seawater electrolysis is an emerging technology that is effective for grid-scale carbon-neutral hydrogen mass production yet challenging.Circumventing scaling relations is an effective strategy to break through the bottleneck of natural seawater splitting.Herein,by DFT calculation,we demonstrated that the interface boundaries between Ni_(2)P and MoO_(2) play an essential role in the selfrelaxation of the Ni-O interfacial bond,effectively modulating a coordination number of intermediates to control independently their adsorption-free energy,thus circumventing the adsorption-energy scaling relation.Following this conceptual model,a well-defined 3D F-doped Ni_(2)P-MoO_(2) heterostructure microrod array was rationally designed via an interfacial engineering strategy toward urea-assisted natural seawater electrolysis.As a result,the F-Ni_(2)P-MoO_(2) exhibits eminently active and durable bifunctional catalysts for both HER and OER in acid,alkaline,and alkaline sea water-based electrolytes.By in-situ analysis,we found that a thin amorphous layer of NiOOH,which is evolved from the Ni_(2)P during anodic reaction,is real catalytic active sites for the OER and UOR processes.Remarkable,such electrode-assembled urea-assisted natural seawater electrolyzer requires low voltages of 1.29 and 1.75 V to drive 10 and600 mA cm^(-2)and demonstrates superior durability by operating continuously for 100 h at 100 mA cm^(-2),beyond commercial Pt/C||RuO_(2) and most previous reports.
基金Supported by the Knowledge Innovation Program of the Institute of Geo- graphic Sciences and Natural Resources Research, the Chinese Academy of Sciences (CX10G-E01-02-01, CX10G-E01-08-02, and KZCX1-SW-01- 01A2), the National Natural Science Foundation of China (30330150).
文摘The past few decades have seen a resurgence of Interest in biological allometry. Specifically, a number of recent studies has suggested a -4/3 Invariant scaling relationship between mass and density that Is universally valid for tree-dominated communities, regardless of their phyietic affiliation or habitat. In the present study, we test this scaling relationship using a comprehensive forest biomass database, Including 1 266 plots of six blomes and 17 forest types across China. The present study shows that the scaling exponent of the massdensity relationship varies across different tree-dominated communities and habitats. This great variability In the scaling exponent makes any generalization unwarranted. Although Inappropriate regression methods can lead to flawed estimation of the scaling exponent, inconsistency of theoretical framework and empirical patterns may have undermined the validity of previous work.
基金the National Science Fund for Distinguished Young Scholars(Grant No.51925504)the National Key R&D Program of China(Grant No.2018YFF01012400)+3 种基金the National Science and Technology Innovation Leading Academic(Ten Thousand Talent Program)the National Defense Science and Technology Bureau Project(Grant No.JSJL2018110A001)the Pre-research of Equipment of the General Armaments Department(Grant No.41422050301)the Graduate Innovation Fund of Jilin University(Grant No.101832020CX103)。
文摘The scaling relationships of elastic-perfectly plastic film/coating materials during sharp indentation have been obtained using dimensional analysis and finite-element modeling. Besides the bulk substrate materials, a wide range of film/coating materials with different ratios in term of the Young’s modulus and yield strength were examined, namely different values of Ef/Esand Yf/Es.Based on these scaling relationships, the substrate effects on indentation response and deformed surface profile of residual imprint are given. Furthermore, the scaling relationship among the work of indentation, reduced elastic modulus and hardness has been found. It is found that the ratio of the indentation hardness to measurement of substrate elastic modulus could be used to characterize the wear resistance of film/coating materials. In addition, a novel method to acquire the intrinsic hardness and elastic modulus of film/coating materials is proposed combined with the well-known 10% critical indentation depth rule, which avoids the error caused by estimating the contact area. This work could be contributed for characterizing the mechanical properties of film/coating materials at micro-and nanoscale.
基金supported by the Postdoctoral Science Foundation of China for Innovative Talents(Grant No.BX2022008)the National Natural Science Foundation of China(Grant Nos.12202007,11890681,12032001 and 11521202)。
文摘The self-assembly of surface-order structures based on the surface wrinkling of stiff film-compliant substrate structures(SFCS)is potentially useful in the fabrication of functional devices,the manufacture of superhydrophobic or self-cleaning surfaces,and so on.Due to the influence of the intrinsic characteristic length(g),the surface wrinkling behavior of SFCS at the micro scale is different from that at the macro scale.In this work,based on the strain gradient theory,a trans-scale surface wrinkling model for SFCS is established.First,the effectiveness of this model is verified by previous experiments.Then,based on the model and dimensional analysis,the effect of g on the surface wrinkling behavior is investigated,and the scaling relationship of surface wrinkling of SFCS at different scales is analyzed.The results show that the influence of g cannot be neglected when the film thickness decreases to the one comparable to g.At the micro scale,g will lead to the increase of the critical wrinkling wavelength and load.In addition,the scaling relationship of surface wrinkling at the micro scale will not follow the traditional one.Our study explains the underlying mechanism of the dissimilarity of surface wrinkling behaviors of SFCS at different scales and lays a theoretical foundation for the precise control of surface-order structures.
基金the National Natural Science Foundation of China(Grant Nos.11890681,12032001,and 11521202).
文摘The indentation test is a localized testing technique;therefore,the role of the material size-effect and local non-uniformity is of much importance.The influence of the heterogeneity in size-independent materials has been studied previously.The present work detailedly investigated the influence of the material size-effect and heterogeneity(inclusions near the indenter tip)on the indentation hardness using a size-dependent strain gradient plastic theory.And it was found that when considering the material size-ffect,shallow hard inclusions in the heterogeneous materials more significantly enhance the material indentation hardness compared with the size-independent materials which are based on the conventional plastic theory.This hardening effect is be-lieved to be related to the elevation of the load and local constraints of large deformation.The effect of material inhomogeneity mainly comes from the non-uniformity of the structure rather than the inclusion modulus itself especially when the size-effect is involved,and the transition range of the inclusion modulus'influence is pretty narrow.The effect of non-uniformity becomes negligible after the initial inclusion depth is larger than its diameter.The horizontal offset of the indenter from the inclusion is also of much sensitivity to the influence of the heterogeneous indentation.This paper focuses on the scaling relationships in micro-and nanoindentation,the influence of non-uniformity in microscopic materials is studied and supplemented as well.
文摘Though touted as a potential way to realize clean ammonia synthesis,electrochemical ammonia synthesis is currently limited by its catalytic efficiency.Great effort has been made to find catalysts with improved activity toward electrochemical nitrogen reduction reaction(eNRR).Rational screening of catalysts can be facilitated using the volcano relationship between catalytic activity and adsorption energy of an intermediate,namely,the activity descriptor.In this work,we proposeΔG^(*)_(NH_(2))+ΔG^(*)_(NNH)as a combinatorial descriptor,which shows better predictive power than traditional descriptors using the adsorption free energies of single intermediates.The volcano plots based on the combinatorial descriptor exhibits peak activity fixedly at the descriptor value corresponding to the formation free energy of NH3,regardless of the catalyst types;while the descriptor values correspond to the top activities for eNRR on volcano plots based on single descriptors usually vary with the types of catalysts.
文摘To evaluate patient preferences for sildenafil citrate or tadalafil (PDE-5 inhibitors available for the treatment of erectile dysfunction [ED]) and assess potential reasons for these preferences. Methods: This open-label study was conducted on Korean men taking sildenafil, at least 6 weeks prior to study entry, for ED. Following screening, patients continued sildenafil treatment for 4 weeks, then after a 1-week washout period, switched to tadalafil for 8 weeks. Patients then continued with their treatment of choice during an extension phase. Psychosocial factors (time concern, spontaneity, sexual self-confidence) were evaluated using Psychological and Interpersonal Relation- ship Scales (PAIRS), while timing of dose to sexual attempt patterns were assessed from patient diaries. Results: The present study enrolled 160 Korean men (mean age 55 years) with prior median sildenafil use of 585 days. During the extension phase, 73.7% of patients elected to take tadalafil, whereas 26.3% chose sildenafil (P 〈 0.001). After switching from sildenafil to tadalafil, mean PAIRS time concern scores decreased from 2.54 to 2.42 (P = 0.002), with no statistically significant differences observed between the sildenafil and tadalafil assessment phases in sexual spontaneity and self-confidence scores. Sexual attempts made 〉 4 h to 〈 36 h post-dose occurred in 4.5% of patients during the sildenafil assessment phase compared with 17.5% during the tadalafil assessment phase. Conclusion: After experiencing both sildenafil and tadalafil, the majority of patients exhibited a preference for tadalafil. This preference might be influenced by psychosocial factors, such as decreased time concerns, and a broader window of opportunity available for sexual activity.
基金financial support by the National Natural Science Foundation of China(No.22172167).
文摘Size hierarchy is a distinct feature of nanogold-catalysts as it can strongly affect their performance in various reactions. We developed a simple method to generate Au n S m nanoclusters of different sizes by thermal treatment of an Au144(PET)60 (PET: phenylethanethiol) parent cluster. These clusters, deposited on activated carbon, exhibit excellent catalytic performance in the hydrochlorination of acetylene. In-situ ultraviolet laser dissociation high-resolution mass spectrometry of the parent cluster in the presence of acetylene revealed a remarkable cluster size-dependence of acetylene adsorption, which is a crucial step in the hydrochlorination. Systematic density functional theory calculations of the reaction pathways on the differently-sized clusters provide deeper insight into the cluster size dependence of the adsorption energies of the reactants and afforded a scaling relationship between the adsorption energy of acetylene and the co-adsorption energies of the reactants (C_(2)H_(2) and HCl), which could enable a qualitative prediction of the optimal Au n S m cluster for the hydrochlorination of acetylene.
基金B.J.was funded by grants of Slovak Scientific Grant Agency(VEGA)No.2/0055/10,2/0034/10R.M.by the Spanish MICINN(grants AGL2010-10935-E,CGL2011-28778,and‘Ramon y Cajal’contract)the Madrid Regional Government(grant URJC-CM-2010-CET-5412).
文摘Aims The present study aims(i)to examine if recently reported interspecific shoot-level biomass allocational trade-offs,i.e.isometric trade-offs between leaf mass(LM)and stem mass(SM)and between leaf size and leaf number,hold intraspecifically and(ii)to explore whether those scaling relationships are independent of shoot type(i.e.long vs.short shoots).Methods In order to address our questions,we used Fagus sylvatica saplings growing under a broad light range that were sampled in theWestern Carpathians Mountains(Slovakia).Important Findings We found that:(i)intraspecific shoot-level biomass allocational trade-offs differ from those reported interspecifically and that(ii)long and short shoots differ in biomass allocation scaling coefficients.Allometric relationships with slopes statistically smaller than 1.0 or higher than-1.0,were found between SM and LM and between mean leafing intensity and individual leaf mass,respectively,in long shoots.In contrast,isometric scaling was found in short shoots.This suggests that leaf mass in short shoots is unaffected by shoot stem mass,in contrast to long shoots.Short shoots also had a larger fraction of biomass allocated to leaves.Beech shoots,as has been observed in other shoot dimorphic species,are specialized,with short shoots specializing in carbon gain and long shoots in space acquisition.A greater shift in LM than in SM among species during speciation shifting from allometric intraspecific relationships to an isometric interspecific scaling relationship between those traits could explain the discrepancies between the outputs of the present intraspecific study and others similar studies.This study draws attention to the importance of considering shoot types in future studies dealing with allocation rules in species with dimorphic shoots.
基金support from the Centre for Industrial Catalysis Science and Innovation(iCSI),which receives financial support from the NO237922.
文摘Reverse water gas shift(RWGS)catalysis,a prominent technology for converting CO2 to CO,is emerging to meet the growing demand of global environment.However,the fundamental understanding of the reaction mechanism is hindered by the complex nature of the reaction.Herein,microkinetic modeling of RWGS on different metals(i.e.,Co,Ru,Fe,Ni,Cu,Rh,Pd,and Pt)was performed based on the DFT results to provide the mechanistic insights and achieve the catalyst screening.Adsorption energies of the carbon-based species and the oxygen-based species can be correlated to the adsorption energy of carbon and oxygen,respectively.Moreover,oxygen adsorption energy is an excellent descriptor for the barrier of CO2 and CO direct dissociation and the difference in reaction barrier between CO2(or CO)dissociation and hydrogenation.The reaction mechanism varies on various metals.Direct CO2 dissociation is the dominating route on Co,Fe,Ru,Rh,Cu,and Ni,while it competes with the COOH-mediated path on Pt and Pd surface.The eights metals can be divided into two groups based on the degree of rate control analysis for CO production,where CO–O bond cleavage is rate relevant on Pt,Pd,and Cu,and OH–H binding is rate-controlling on Co,Fe,Ru,Ni,and Rh.Both CO-direct dissociation and hydrogen-assisted route to CH4 contribute to the methane formation on Co,Fe,Pt,Pd,Ru,and Rh,despite the significant barrier difference between the two routes.Besides,the specific rate-relevant transition states and intermediates are suggested for methane formation,and thus,the selectivity can be tuned by adjusting the energy.The descriptor(C-and O-formation energy)based microkinetic modeling proposed that the activity trend is Rh~Ni>Pt~Pd>Cu>Co>Ru>Fe,where Fe,Co,Ru,and Ni tends to be oxidized.The predicted activity trend is well consistent with those obtained experimentally.The interpolation concept of adsorption energy was used to identify bimetallic materials for highly active catalysts for RWGS.