We present the Empirical Formula (EF) to calculate the phantom scatter factor, S<sub>p</sub>, of small radiation fields under charge particle dis-equilibrium conditions. The Empirical Formula (EF) was veri...We present the Empirical Formula (EF) to calculate the phantom scatter factor, S<sub>p</sub>, of small radiation fields under charge particle dis-equilibrium conditions. The Empirical Formula (EF) was verified by examining the calculated data with experimentally measured data utilizing the anthropomorphic phantom in twelve different combinations of beam entry and point location, where the value for S<sub>p</sub> per tissue composition was within 3% in 8/12 cases, 5% in 1/12 cases, and 10% in 3/12 cases. Our results showed a good agreement with experimental data to less than 1% when the ion chamber was surrounded by the homogeneous tissue, whether lung, soft tissue, or bone. Indicating that the prediction of the equation is valid, and it can be reliably used for phantom scatter factor calculation for different homogeneous media under charge particle dis- equilibrium conditions.展开更多
Classic maximum entropy quantile function method (CMEQFM) based on the probability weighted moments (PWMs) can accurately estimate the quantile function of random variable on small samples, but inaccurately on the...Classic maximum entropy quantile function method (CMEQFM) based on the probability weighted moments (PWMs) can accurately estimate the quantile function of random variable on small samples, but inaccurately on the very small samples. To overcome this weakness, least square maximum entropy quantile function method (LSMEQFM) and that with constraint condition (LSMEQFMCC) are proposed. To improve the confidence level of quantile function estimation, scatter factor method is combined with maximum entropy method to estimate the confidence interval of quantile function. From the comparisons of these methods about two common probability distributions and one engineering application, it is showed that CMEQFM can estimate the quantile function accurately on the small samples but inaccurately on the very small samples (10 samples); LSMEQFM and LSMEQFMCC can be successfully applied to the very small samples; with consideration of the constraint condition on quantile function, LSMEQFMCC is more stable and computationally accurate than LSMEQFM; scatter factor confidence interval estimation method based on LSMEQFM or LSMEQFMCC has good estimation accuracy on the confidence interval of quantile function, and that based on LSMEQFMCC is the most stable and accurate method on the very small samples (10 samples).展开更多
The stimulated Brillouin scattering (SBS) threshold enhancement factor in a pure white noise linewidth broad- ening Yb-doped fiber amplifier (YDFA) with a short large mode area fiber is theoretically and experimen...The stimulated Brillouin scattering (SBS) threshold enhancement factor in a pure white noise linewidth broad- ening Yb-doped fiber amplifier (YDFA) with a short large mode area fiber is theoretically and experimentally studied. We demonstrate a 1064.08nm, 11.6 GHz finewidth, 1.5 k W output power YDFA with an SBS threshold enhancement of -57 (26 W SBS threshold with single frequency seed). The output beam is near-diffraction lim- ited with a beam quality factor elM2 = 1.15 and a slope efficiency of up to 87%. No SBS or stimulated Raman scattering effects are observed in the whole power range. Further power sealing is limited by the available pump power in our system.展开更多
Assessment of the radiative forcing of aerosols in models still lacks sufficient input data for aerosol hygroscopicity. The light scattering enhancement factor [ f(RH, λ)] is a crucial parameter for describing aeroso...Assessment of the radiative forcing of aerosols in models still lacks sufficient input data for aerosol hygroscopicity. The light scattering enhancement factor [ f(RH, λ)] is a crucial parameter for describing aerosol hygroscopic growth properties.In this paper, we provide a survey of f(RH, λ) studies in China for the past seven years, including instrument developments of humidified nephelometers, ambient f(RH, λ) measurements in China, f(RH, λ) parameterization schemes, and f(RH, λ)applications in aerosol measurements. Comparisons of different f(RH, λ) parameterizations are carried out to check their performance in China using field measurement datasets. We also summary the parameterization schemes for predicting f(RH, λ)with aerosol chemical compositions. The recently developed methods to observe other aerosol properties using f(RH, λ)measurements, such as calculating the aerosol hygroscopicity parameter, cloud condensation nuclei number concentration,aerosol liquid water content, and aerosol asymmetry factor, are introduced. Suggestions for further research on f(RH, λ) in China are given.展开更多
Total atomic scattering factors for the 1s^23s ^2S stages for the lithium isoelectronic sequence from Z = 3 - 10 are calculated by using the full core plus correlation wave function. The influence of electron correlat...Total atomic scattering factors for the 1s^23s ^2S stages for the lithium isoelectronic sequence from Z = 3 - 10 are calculated by using the full core plus correlation wave function. The influence of electron correlation on total atomic scattering factors is considered sufficiently in our calculation. For the 1s^2 3s ^2S states of the lithium isoelectronic sequence, the general functional behaviour of total atomic scattering factors is analyzed together for each state of the isoelectronic sequence.展开更多
This paper is concerned with the inverse scattering problems for Schrdinger equations with compactly supported potentials.For purpose of reconstructing the support of the potential,we derive a factorization of the sca...This paper is concerned with the inverse scattering problems for Schrdinger equations with compactly supported potentials.For purpose of reconstructing the support of the potential,we derive a factorization of the scattering amplitude operator A and prove that the ranges of (A* A) ^1/4 and G which maps more general incident fields than plane waves into the scattering amplitude coincide.As an application we characterize the support of the potential using only the spectral data of the operator A.展开更多
The scattering factor of C60 molecule have been calculated according toX-ray diffraction theory. By comparing it with the atomic scattering factor of carbon,it is found that the scattering factor of C60 molecule is a ...The scattering factor of C60 molecule have been calculated according toX-ray diffraction theory. By comparing it with the atomic scattering factor of carbon,it is found that the scattering factor of C60 molecule is a sine-oscillating attenuate finction of sinθ/λ depending on the direction of the incident beam, which is attenuatedmore quickly than that of single carbon atom. However, there is nO evident differencefor the different directions when 0.00≤sinθ/λ≤0.15.展开更多
In this paper, we consider the inverse scattering problem of reconstructing a bounded obstacle in a three-dimensional planar waveguide from the scattered near-field data measured on a finite cylindrical surface contai...In this paper, we consider the inverse scattering problem of reconstructing a bounded obstacle in a three-dimensional planar waveguide from the scattered near-field data measured on a finite cylindrical surface containing the obstacle and corresponding to infinitely many incident point sources also placed on the measurement surface. The obstacle is allowed to be an impenetrable scatterer or a penetrable scatterer. We establish the validity of the factorization method with the nearfield data to characterize the obstacle in the planar waveguide by constructing an outgoing-to-incoming operator which is an integral operator defined on the measurement surface with the kernel given in terms of an infinite series.展开更多
The low Gilbert damping factor, which is usually measured by ferromagnetic resonance, is crucial in spintronic applications. Two-magnon scattering occurs when the orthogonMity of the ferromagnetic resonance mode and o...The low Gilbert damping factor, which is usually measured by ferromagnetic resonance, is crucial in spintronic applications. Two-magnon scattering occurs when the orthogonMity of the ferromagnetic resonance mode and other degenerate spin wave modes was broken by magnetic anisotropy, voids, second phase, surface defects, etc., which is important in analysis of ferromagnetic resonance linewidth. Direct fitting to linewidth with Gilbert damping is advisable only when the measured linewidth is a linear function of measuring frequency in a broad band measurement. We observe the nonlinear ferromagnetic resonance linewidth of Co2MnSi thin films with respect to measuring frequency in broad band measurement. Experimental data could be well fitted with the model including two-magnon scattering with no fixed parameters. The fitting results show that two-magnon scattering results in the nonlinear linewidth behavior, and the Gilbert damping factor is much smaller than reported ones, indicating that our Co2MnSi films are more suitable for the applications of spin transfer torque.展开更多
The method of complex function and the method of Green's function are used to investigate the problem of SH-wave scattering by radial cracks of any limited length along the radius originating at the boundary of an...The method of complex function and the method of Green's function are used to investigate the problem of SH-wave scattering by radial cracks of any limited length along the radius originating at the boundary of an elliptical hole, and the solution of dynamic stress intensity factor at the crack tip was given. A Green's function was constructed for the problem, which is a basic solution of displacement field for an elastic half space containing a half elliptical gap impacted by anti-plane harmonic linear source force at any point of its horizontal boundary. With division of a crack technique, a series of integral equations can be established on the conditions of continuity and the solution of dynamic stress intensity factor can be obtained. The influence of an elliptical hole on the dynamic stress intensity factor at the crack tip was discussed.展开更多
In previous work, the electron radius was identified as the “actual electron radius.” However, this is more accurately described as the electron radius at rest. This study reexamines the electron with an emphasis on...In previous work, the electron radius was identified as the “actual electron radius.” However, this is more accurately described as the electron radius at rest. This study reexamines the electron with an emphasis on the electron radius under motion, incorporating the effects of length contraction. The findings suggest that the radius is subject to Lorentz contraction, which has interesting implications for relativistic effects at the subatomic level.展开更多
Particle shape contributes to understanding the physical and chemical processes of the atmosphere and better ascer- taining the origins and chemical compositions of the particles. The particle shape can be classified ...Particle shape contributes to understanding the physical and chemical processes of the atmosphere and better ascer- taining the origins and chemical compositions of the particles. The particle shape can be classified by the aspect ratio. which can be estimated through the asymmetry factor measured with angularly resolved light scattering. An experimental method of obtaining the asymmetry factor based on simultaneous small forward angle light scattering and aerodynamic size measurements is described briefly. The near forward scattering intensity signals of three detectors in the azimuthal angles at 120° offset are calculated using the methods of T-matrix and discrete dipole approximation. Prolate spheroid particles with different aspect ratios are used as the shape models with the assumption that the symmetry axis is parallel to the flow axis and perpendicular to the incident light. The relations between the asymmetry factor and the optical size and aerodynamic size at various equivalent sizes, refractive indices, and mass densities are discussed in this paper. The numerically calculated results indicate that an elongated particle may be classified at diameter larger than 1.0 μm, and may not be distinguished from a sphere at diameter less than 0.5 μm. It is estimated that the lowest detected aspect ratio is around 1.5: I in consideration of the experimental errors.展开更多
文摘We present the Empirical Formula (EF) to calculate the phantom scatter factor, S<sub>p</sub>, of small radiation fields under charge particle dis-equilibrium conditions. The Empirical Formula (EF) was verified by examining the calculated data with experimentally measured data utilizing the anthropomorphic phantom in twelve different combinations of beam entry and point location, where the value for S<sub>p</sub> per tissue composition was within 3% in 8/12 cases, 5% in 1/12 cases, and 10% in 3/12 cases. Our results showed a good agreement with experimental data to less than 1% when the ion chamber was surrounded by the homogeneous tissue, whether lung, soft tissue, or bone. Indicating that the prediction of the equation is valid, and it can be reliably used for phantom scatter factor calculation for different homogeneous media under charge particle dis- equilibrium conditions.
文摘Classic maximum entropy quantile function method (CMEQFM) based on the probability weighted moments (PWMs) can accurately estimate the quantile function of random variable on small samples, but inaccurately on the very small samples. To overcome this weakness, least square maximum entropy quantile function method (LSMEQFM) and that with constraint condition (LSMEQFMCC) are proposed. To improve the confidence level of quantile function estimation, scatter factor method is combined with maximum entropy method to estimate the confidence interval of quantile function. From the comparisons of these methods about two common probability distributions and one engineering application, it is showed that CMEQFM can estimate the quantile function accurately on the small samples but inaccurately on the very small samples (10 samples); LSMEQFM and LSMEQFMCC can be successfully applied to the very small samples; with consideration of the constraint condition on quantile function, LSMEQFMCC is more stable and computationally accurate than LSMEQFM; scatter factor confidence interval estimation method based on LSMEQFM or LSMEQFMCC has good estimation accuracy on the confidence interval of quantile function, and that based on LSMEQFMCC is the most stable and accurate method on the very small samples (10 samples).
基金Supported by the National Natural Science Foundation of China under Grant Nos U1330134,61308024 and 11174305the National High-Technology Research and Development Program of China under Grant No 2014AA041901the Shanghai Natural Science Foundation under Grant No 11ZR1441400
文摘The stimulated Brillouin scattering (SBS) threshold enhancement factor in a pure white noise linewidth broad- ening Yb-doped fiber amplifier (YDFA) with a short large mode area fiber is theoretically and experimentally studied. We demonstrate a 1064.08nm, 11.6 GHz finewidth, 1.5 k W output power YDFA with an SBS threshold enhancement of -57 (26 W SBS threshold with single frequency seed). The output beam is near-diffraction lim- ited with a beam quality factor elM2 = 1.15 and a slope efficiency of up to 87%. No SBS or stimulated Raman scattering effects are observed in the whole power range. Further power sealing is limited by the available pump power in our system.
基金supported by the National Natural Science Foundation of China(Grant No.41590872)
文摘Assessment of the radiative forcing of aerosols in models still lacks sufficient input data for aerosol hygroscopicity. The light scattering enhancement factor [ f(RH, λ)] is a crucial parameter for describing aerosol hygroscopic growth properties.In this paper, we provide a survey of f(RH, λ) studies in China for the past seven years, including instrument developments of humidified nephelometers, ambient f(RH, λ) measurements in China, f(RH, λ) parameterization schemes, and f(RH, λ)applications in aerosol measurements. Comparisons of different f(RH, λ) parameterizations are carried out to check their performance in China using field measurement datasets. We also summary the parameterization schemes for predicting f(RH, λ)with aerosol chemical compositions. The recently developed methods to observe other aerosol properties using f(RH, λ)measurements, such as calculating the aerosol hygroscopicity parameter, cloud condensation nuclei number concentration,aerosol liquid water content, and aerosol asymmetry factor, are introduced. Suggestions for further research on f(RH, λ) in China are given.
基金supported by National Natural Science Foundation of China under Grant No.10774063Basic Research Foundation of Beijing Institute of Technology under Grant No.20070742006
文摘Total atomic scattering factors for the 1s^23s ^2S stages for the lithium isoelectronic sequence from Z = 3 - 10 are calculated by using the full core plus correlation wave function. The influence of electron correlation on total atomic scattering factors is considered sufficiently in our calculation. For the 1s^2 3s ^2S states of the lithium isoelectronic sequence, the general functional behaviour of total atomic scattering factors is analyzed together for each state of the isoelectronic sequence.
基金The Major State Basic Research Development Program Grant (2005CB321701)the Heilongjiang Education Committee Grant (11551364) of China
文摘This paper is concerned with the inverse scattering problems for Schrdinger equations with compactly supported potentials.For purpose of reconstructing the support of the potential,we derive a factorization of the scattering amplitude operator A and prove that the ranges of (A* A) ^1/4 and G which maps more general incident fields than plane waves into the scattering amplitude coincide.As an application we characterize the support of the potential using only the spectral data of the operator A.
文摘The scattering factor of C60 molecule have been calculated according toX-ray diffraction theory. By comparing it with the atomic scattering factor of carbon,it is found that the scattering factor of C60 molecule is a sine-oscillating attenuate finction of sinθ/λ depending on the direction of the incident beam, which is attenuatedmore quickly than that of single carbon atom. However, there is nO evident differencefor the different directions when 0.00≤sinθ/λ≤0.15.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61421062 and 61520106004)the Microsoft Research Fund of Asia
文摘In this paper, we consider the inverse scattering problem of reconstructing a bounded obstacle in a three-dimensional planar waveguide from the scattered near-field data measured on a finite cylindrical surface containing the obstacle and corresponding to infinitely many incident point sources also placed on the measurement surface. The obstacle is allowed to be an impenetrable scatterer or a penetrable scatterer. We establish the validity of the factorization method with the nearfield data to characterize the obstacle in the planar waveguide by constructing an outgoing-to-incoming operator which is an integral operator defined on the measurement surface with the kernel given in terms of an infinite series.
基金Supported by the National Basic Research Program of China under Grant No 2015CB921502the National Natural Science Foundation of China under Grant Nos 11474184 and 11174183+4 种基金the Program for New Century Excellent Talents of China under Grant No NCET-10-0541the Scientific Research Foundation for Returned Overseas Chinese Scholars under Grant No B13029the Natural Science Foundation of Shandong Province under Grant No JQ201201the Doctorate Foundation of Shandong Province under Grant No BS2013CL042the Young Scientists Fund of the National Natural Science Foundation of China under Grant No 11204164
文摘The low Gilbert damping factor, which is usually measured by ferromagnetic resonance, is crucial in spintronic applications. Two-magnon scattering occurs when the orthogonMity of the ferromagnetic resonance mode and other degenerate spin wave modes was broken by magnetic anisotropy, voids, second phase, surface defects, etc., which is important in analysis of ferromagnetic resonance linewidth. Direct fitting to linewidth with Gilbert damping is advisable only when the measured linewidth is a linear function of measuring frequency in a broad band measurement. We observe the nonlinear ferromagnetic resonance linewidth of Co2MnSi thin films with respect to measuring frequency in broad band measurement. Experimental data could be well fitted with the model including two-magnon scattering with no fixed parameters. The fitting results show that two-magnon scattering results in the nonlinear linewidth behavior, and the Gilbert damping factor is much smaller than reported ones, indicating that our Co2MnSi films are more suitable for the applications of spin transfer torque.
文摘The method of complex function and the method of Green's function are used to investigate the problem of SH-wave scattering by radial cracks of any limited length along the radius originating at the boundary of an elliptical hole, and the solution of dynamic stress intensity factor at the crack tip was given. A Green's function was constructed for the problem, which is a basic solution of displacement field for an elastic half space containing a half elliptical gap impacted by anti-plane harmonic linear source force at any point of its horizontal boundary. With division of a crack technique, a series of integral equations can be established on the conditions of continuity and the solution of dynamic stress intensity factor can be obtained. The influence of an elliptical hole on the dynamic stress intensity factor at the crack tip was discussed.
文摘In previous work, the electron radius was identified as the “actual electron radius.” However, this is more accurately described as the electron radius at rest. This study reexamines the electron with an emphasis on the electron radius under motion, incorporating the effects of length contraction. The findings suggest that the radius is subject to Lorentz contraction, which has interesting implications for relativistic effects at the subatomic level.
基金Project supported by the National Natural Science Foundation of China(Grant No.41275132)
文摘Particle shape contributes to understanding the physical and chemical processes of the atmosphere and better ascer- taining the origins and chemical compositions of the particles. The particle shape can be classified by the aspect ratio. which can be estimated through the asymmetry factor measured with angularly resolved light scattering. An experimental method of obtaining the asymmetry factor based on simultaneous small forward angle light scattering and aerodynamic size measurements is described briefly. The near forward scattering intensity signals of three detectors in the azimuthal angles at 120° offset are calculated using the methods of T-matrix and discrete dipole approximation. Prolate spheroid particles with different aspect ratios are used as the shape models with the assumption that the symmetry axis is parallel to the flow axis and perpendicular to the incident light. The relations between the asymmetry factor and the optical size and aerodynamic size at various equivalent sizes, refractive indices, and mass densities are discussed in this paper. The numerically calculated results indicate that an elongated particle may be classified at diameter larger than 1.0 μm, and may not be distinguished from a sphere at diameter less than 0.5 μm. It is estimated that the lowest detected aspect ratio is around 1.5: I in consideration of the experimental errors.