In the adiabatic and weak-modulation quantum pump, net electron flow is driven from one reservoir to another by absorbing or emitting an energy quantum nω from or to the reservoirs. This paper considers high-order de...In the adiabatic and weak-modulation quantum pump, net electron flow is driven from one reservoir to another by absorbing or emitting an energy quantum nω from or to the reservoirs. This paper considers high-order dependence of the scattering matrix on the time. Non-sinusoidal behaviour of strong pumping is revealed. The relation between the pumped current and the ac driving amplitude varies from power of 2, 1 to 1/2 when stronger modulation is exerted. Open experimental observation can be interpreted by multi-energy-quantum-related processes.展开更多
Adopting "simultaneous transmitting, simultaneous receiving" operational scheme, instantaneous polarization radar (IPR) can measure target polarization scattering matrix (PSM) using only once target echoes in tw...Adopting "simultaneous transmitting, simultaneous receiving" operational scheme, instantaneous polarization radar (IPR) can measure target polarization scattering matrix (PSM) using only once target echoes in two orthogonal polarization channels. Firstly, signal model and signal process are advanced under narrowband condition. Secondly, measurement performances of two typical IPR waveforms are analyzed in detail. At last, field experiments are carried out using X-band IPR system designed by National University of Defense Technology (NUDT), China. Compared with results obtained by alternative polarization measurement scheme, following results can be obtained: the difference of relative amplitude measurement results is smaller than 2 dB and that of relative phase measurement results is smaller than 10?, verifying the validity of instantaneous polarization measurement scheme.展开更多
High-quality optical components have been widely used in various applications;thus,extremely high beam quality is required.Moreover,surface roughness is a key indicator of the surface quality.In this study,the angular...High-quality optical components have been widely used in various applications;thus,extremely high beam quality is required.Moreover,surface roughness is a key indicator of the surface quality.In this study,the angular distribution of light scattering field intensity was obtained for surfaces having different roughness profiles based on the finite difference time domain(FDTD)method,and the results were compared with those obtained using the generalized Harvey-Shack(GHS)theory.It was shown that the FDTD approach can be used for an accurate simulation of the scattered field of a rough surface,and the superposition of results obtained from many surfaces that have the same roughness level was in good agreement with the result given by the analytic GHS model.A light scattering matrix(LSM)method was proposed based on the FDTD simulation results that could obtain rich surface roughness information.The classification effect of LSM was compared with that of the single-incidence scattering distribution(SISD)based on a ResNet-50 deep learning network.The classification accuracy of the model trained with the LSM dataset was obtained as 95.74%,which was 23.40%higher than that trained using the SISD dataset.Moreover,the effects of different noise types and filtering methods on the classification performance were analyzed,and the LSM was also shown to improve the robustness and generalizability of the trained surface roughness classifier.Overall,the proposed LSM method has important implications for improving the data acquisition scheme of current light scattering measurement systems,and it also has the potential to be used for detection and characterization of surface defects of optical components.展开更多
The authors first establish a quantum microscopic scattering matrix model in multidimen-sional wave-vector space, which relates the phase space density of each superlattice cell withthat of the neighbouring cells. The...The authors first establish a quantum microscopic scattering matrix model in multidimen-sional wave-vector space, which relates the phase space density of each superlattice cell withthat of the neighbouring cells. Then, in the limit of a large number of cells, a SHE (SphericalHarmonics Expansion)-type model of diffusion equations for the particle number density in theposition-energy space is obtained. The crucial features of diffusion constants on retaining thememory of the quantum scattering characteristics of the superlattice elementary cell (like e.g.transmission resonances) are shown in order. Two examples are treated with the analyticallycomputation of the diffusion constants.展开更多
The present work deals with the calculation of transition probability between two diabatic potentials coupled by any arbitrary coupling. The method presented in this work is applicable to any type of coupling while fo...The present work deals with the calculation of transition probability between two diabatic potentials coupled by any arbitrary coupling. The method presented in this work is applicable to any type of coupling while for numerical calculations we have assumed the arbitrary coupling as Gaussian coupling. This arbitrary coupling is expressed as a collection of Dirac delta functions and by the use of the transfer matrix technique the transition probability from one diabatic potential to another diabatic potential is calculated. We examine our approach by considering the case of two constant potentials coupled by Gaussian coupling as an arbitrary coupling.展开更多
In the conventional single polarization SAR system, only the scattering information of HH polarization or VV polarization can be obtained. Only co-polarizaion scattering cases are considered and cross-polarizaiton (H...In the conventional single polarization SAR system, only the scattering information of HH polarization or VV polarization can be obtained. Only co-polarizaion scattering cases are considered and cross-polarizaiton (HV and VH polarization) scattering cases are neglected. Therefore, much important information must be lost. Research on full polarization SAR system is an important approach to extract more useful information from SAR imaging. In this paper, the authors derived the full polarization scattering coefficients of 2-D sea fractal surface and simulated the radar cross section (RCS) of different polarizations. They also gave the exact theoretical explanations of the fully polarization scattering characteristics of sea fractal surface, and confirmed that the depolarization can be neglected. The result is the basis of the full SAR system design and SAR imaging.展开更多
An analytical technique, referred to as the scattering matrix method (SMM), is developed to analyse the scattering of a planar wave from a conductolution for the nonuniform fering cylinder coated with nonuniform mag...An analytical technique, referred to as the scattering matrix method (SMM), is developed to analyse the scattering of a planar wave from a conductolution for the nonuniform fering cylinder coated with nonuniform magnetized ferrite. The SMM srite coating can be reduced to the expressions for the scattering and penetrated coefficients in four particular cases: nonuniform magnetized ferrite cylinder, uniform magnetized ferrite-coated conducting cylinder, uniform ferrite cylinder as well as homogeneous dielectric-coated conducting cylinder. The resonant condition for the nonuniform ferrite coating is obtained. The distinctive differences in scattering between the nonuniform ferrite coating and the nonuniform dielectric coating are demonstrated. The effects of applied magnetic fields and wave frequencies on the scattering characteristics for two types of the linear profiles are revealed.展开更多
The acoustic vibration signal of tank is disassembled into the sum of intrinsic mode function (IMF) by multi-resolution empirical mode decomposition (EMD) method. The instantaneous frequency is obtained, and featu...The acoustic vibration signal of tank is disassembled into the sum of intrinsic mode function (IMF) by multi-resolution empirical mode decomposition (EMD) method. The instantaneous frequency is obtained, and feature transformation matrix is figured out by class scatter matrix. Multi- dimensional scale energy vector is mapped into low-dimensional eigenvector, and classification extraction is realized. This method sufficiently separates of different sound target features. The test result indicates that it is effective.展开更多
Scattering of waves, e.g., light, due to medium inhomogeneity is ubiquitous in physics and isconsidered detrimental for many applications. Wavefront shaping technology is a powerful tool to defeatscattering and focus ...Scattering of waves, e.g., light, due to medium inhomogeneity is ubiquitous in physics and isconsidered detrimental for many applications. Wavefront shaping technology is a powerful tool to defeatscattering and focus light through inhomogeneous media, which is vital for optical imaging, communication,therapy, etc. Wavefront shaping based on the scattering matrix (SM) is extremely useful in handling dynamicprocesses in the linear regime. However, the implementation of such a method for controlling light in nonlinearmedia is still a challenge and has been unexplored until now. We report a method to determine the SM ofnonlinear scattering media with second-order nonlinearity. We experimentally demonstrate its feasibility inwavefront control and realize focusing of nonlinear signals through strongly scattering quadratic media.Moreover, we show that statistical properties of this SM still follow the random matrix theory. The scattering-matrix approach of nonlinear scattering medium opens a path toward nonlinear signal recovery, nonlinearimaging, microscopic object tracking, and complex environment quantum information processing.展开更多
Usually the polarization of the interference and the target backscattering may vary constantly, so the optimal receiving polarization of the polarization filter should be recalculated, which makes the filter realizati...Usually the polarization of the interference and the target backscattering may vary constantly, so the optimal receiving polarization of the polarization filter should be recalculated, which makes the filter realization very difficult. Also the predict method of the necessary parameters is not explained in most papers, which makes the polarization filter realization impossible. A novel modi- fied interference suppression (MIS) polarization filter is proposed, which resolves these problems by a new polarization designed strategy. The computation of this polarization filter is easy in most conditions, and the necessary parameters estimation method in real time is introduced, which makes polarization filter design possible.展开更多
A practical calibration method is proposed for instantaneous polarization radar systems.The method only needs one measurement by using a metal sphere.The distortions of system and the actual polarization scattering ma...A practical calibration method is proposed for instantaneous polarization radar systems.The method only needs one measurement by using a metal sphere.The distortions of system and the actual polarization scattering matrix(PSM)of target can be obtained.First,an instantaneous polarization radar system is presented.The system can obtain PSM by a single pulse echo.The dual-polarization antenna can transmit and receive two orthogonal polarization waves.The multilayer micro-strip patch antenna is adopted for this kind of radar system.Second,based on the multi-port network theory,the operation and system errors of instantaneous polarization radar system are analyzed.By making assumption on the cross-talk factors of antenna,distortion matrices of R and Tare derived.Finally,the calibration method based on instantaneous polarization measurement is introduced.Simulation results show the performance of this calibration method.The values of calibrated PSM are in agreement with the actual ones after calibration.展开更多
The application of magnetic fields, electric fields, and the increase of the electromagnetic wave frequency are upand-coming solutions for the blackout problem. Therefore, this study considers the influence of the ext...The application of magnetic fields, electric fields, and the increase of the electromagnetic wave frequency are upand-coming solutions for the blackout problem. Therefore, this study considers the influence of the external magnetic field on the electron flow and the effect of the external electric field on the electron density distribution, and uses the scattering matrix method(SMM) to perform theoretical calculations and analyze the transmission behavior of terahertz waves under different electron densities, magnetic field distributions, and collision frequencies. The results show that the external magnetic field can improve the transmission of terahertz waves at the low-frequency end. Magnetizing the plasma from the direction perpendicular to the incident path can optimize the right-hand polarized wave transmission. The external electric field can increase the transmittance to some extent, and the increase of the collision frequency can suppress the right-hand polarized wave cyclotron resonance caused by the external magnetic field. By adjusting these parameters, it is expected to alleviate the blackout phenomenon to a certain extent.展开更多
Intensive collisions between electrons and neutral particles in partially ionized plasmas generated in atmospheric/sub-atmospheric pressure environments can sufficiently affect the propagation characteristics of elect...Intensive collisions between electrons and neutral particles in partially ionized plasmas generated in atmospheric/sub-atmospheric pressure environments can sufficiently affect the propagation characteristics of electromagnetic waves, particularly in the sub-wavelength regime. To investigate the collisional effect in such plasmas, we introduce a simplified plasma slab model with a thickness on the order of the wavelength of the incident electromagnetic wave. The scattering matrix method (SMM) is applied to solve the wave equation in the plasma slab with significant nonuniformity. Results show that the collisions between the electrons and the neutral particles, as well as the incident angle and the plasma thickness, can disturb the transmission and reduce reflection significantly.展开更多
A plasma-based stable,ultra-wideband electromagnetic(EM) wave absorber structure is studied in this paper for stealth applications.The stability is maintained by a multi-layer structure with several plasma layers an...A plasma-based stable,ultra-wideband electromagnetic(EM) wave absorber structure is studied in this paper for stealth applications.The stability is maintained by a multi-layer structure with several plasma layers and dielectric layers distributed alternately.The plasma in each plasma layer is designed to be uniform,whereas it has a discrete nonuniform distribution from the overall view of the structure.The nonuniform distribution of the plasma is the key to obtaining ultra-wideband wave absorption.A discrete Epstein distribution model is put forward to constrain the nonuniform electron density of the plasma layers,by which the wave absorption range is extended to the ultra-wideband.Then,the scattering matrix method(SMM) is employed to analyze the electromagnetic reflection and absorption of the absorber structure.In the simulation,the validation of the proposed structure and model in ultra-wideband EM wave absorption is first illustrated by comparing the nonuniform plasma model with the uniform case.Then,the influence of various parameters on the EM wave reflection of the plasma are simulated and analyzed in detail,verifying the EM wave absorption performance of the absorber.The proposed structure and model are expected to be superior in some realistic applications,such as supersonic aircraft.展开更多
Mainstream line is significant for the Yellow River situation forecasting and flood control.An effective statistical feature extraction method is proposed in this paper.In this method, a between-class scattering matri...Mainstream line is significant for the Yellow River situation forecasting and flood control.An effective statistical feature extraction method is proposed in this paper.In this method, a between-class scattering matrix based projection algorithm is performed to maximize between-class differences, obtaining effective component for classification;then high-order statistics are utilized as the features to describe the mainstream line in the principal component obtained.Experiments are performed to verify the applicability of the algorithm.The results both on synthesized and real scenes indicate that this approach could extract the mainstream line of the Yellow River automatically, and has a high precision in mainstream line detection.展开更多
Traditional one-way imaging methods become invalid when a target object is completely hidden behind scattering media. In this case, it has been much more challenging, since the light wave is distorted twice.To solve t...Traditional one-way imaging methods become invalid when a target object is completely hidden behind scattering media. In this case, it has been much more challenging, since the light wave is distorted twice.To solve this problem, we propose an imaging method, so-called round-trip imaging, based on the optical transmission matrix of the scattering medium. We show that the object can be recovered directly from the distorted output wave, where no scanning is required during the imaging process. We predict that this method might improve the imaging speed and have potential application for real-time imaging.展开更多
Recently,the LHCb experimental group found an exotic state T_(cc)^(+) from the pp→D^(0)D^(0)π^(+)+X process.A key question is whether it is just a molecule or may have a confined tetraquark ingredient.To investigate...Recently,the LHCb experimental group found an exotic state T_(cc)^(+) from the pp→D^(0)D^(0)π^(+)+X process.A key question is whether it is just a molecule or may have a confined tetraquark ingredient.To investigate this,different methods were used,including a two-channel(D^(∗)+D^(0) and D^(∗)0D^(+))K-matrix unitarization and a single-channel Flatté-like parametrization method analyzed utilizing the pole counting rule and spectral density function sum rule.These analyses demonstrated that T_(cc)^(+) is a molecular state,although the possibility that there may exist an elementary ingredient cannot be excluded,according to an approximate analysis of its production rate.展开更多
Metasurfaces,which are planar arrays of subwavelength artificial structures,have emerged as excellent platforms for the integration and miniaturization of electromagnetic devices and provided ample possibilities for s...Metasurfaces,which are planar arrays of subwavelength artificial structures,have emerged as excellent platforms for the integration and miniaturization of electromagnetic devices and provided ample possibilities for single-dimensional and multi-dimensional manipulations of electromagnetic waves.However,owing to the limited interactions between planar thin metallic nanostructures and electromagnetic waves as well as intrinsic losses in metals,metasurfaces exhibit disadvantages in terms of efficiency,controllability,and functionality.Recent advances in this field show that few-layer metasurfaces can overcome these drawbacks.Few-layer metasurfaces composed of more than one functional layer enable more degrees of design freedom.Hence,they possess unprecedented capabilities for electromagnetic wave manipulation,which have considerable impact in the area of nanophotonics.This article reviews recent advances in few-layer metasurfaces from the viewpoint of their scattering properties.The scattering matrix theory is briefly introduced,and the advantages and drawbacks of few-layer metasurfaces for the realization of arbitrary scattering properties are discussed.Then,a detailed overview of typical few-layer metasurfaces with various scattering properties and their design principles is provided.Finally,an outlook on the future directions and challenges in this promising research area is presented.展开更多
The symmetry of rotation vibration spectra of molecule SiO_2 is described by means of group U(5). Grouptheory approach is adopted to give the matrix elements of stimulated Raman scattering in fiber. The cross sections...The symmetry of rotation vibration spectra of molecule SiO_2 is described by means of group U(5). Grouptheory approach is adopted to give the matrix elements of stimulated Raman scattering in fiber. The cross sectionsand gain coefficients of stimulated Raman scattering are given. The results are in good agreement with the experi-mental values.展开更多
The work presented previously by the authors(Cai and Liou,1982)has been extended in this paper. By making use of our improved model the calculations on scattering phase matrices of hexagonal prism ice crystals(HPIC)ha...The work presented previously by the authors(Cai and Liou,1982)has been extended in this paper. By making use of our improved model the calculations on scattering phase matrices of hexagonal prism ice crystals(HPIC)have been conducted for monodisperse and polydisperse systems.Compared with the model of Cai and Liou,the required computational quantity is decreased by about two orders of magni- tude and the errors of results are less for the new model.Meanwhile,the scattering phase matrices of triangular pyramid ice crystals(TPIC)are also computed in the paper,and the comparison between the scatterings of the two forms of ice crystals is performed.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11004063)the Fundamental Research Funds for the Central Universities(Grant No.2009ZM0299)+1 种基金the Natural Science Foundation of South China University of Technology (Grant No.x2lxE5090410)the Graduate Course Construction Project of South China University of Technology(Grant No.yjzk2009001)
文摘In the adiabatic and weak-modulation quantum pump, net electron flow is driven from one reservoir to another by absorbing or emitting an energy quantum nω from or to the reservoirs. This paper considers high-order dependence of the scattering matrix on the time. Non-sinusoidal behaviour of strong pumping is revealed. The relation between the pumped current and the ac driving amplitude varies from power of 2, 1 to 1/2 when stronger modulation is exerted. Open experimental observation can be interpreted by multi-energy-quantum-related processes.
基金supported by the National Natural Science Foundationof China (60736006 60802078)
文摘Adopting "simultaneous transmitting, simultaneous receiving" operational scheme, instantaneous polarization radar (IPR) can measure target polarization scattering matrix (PSM) using only once target echoes in two orthogonal polarization channels. Firstly, signal model and signal process are advanced under narrowband condition. Secondly, measurement performances of two typical IPR waveforms are analyzed in detail. At last, field experiments are carried out using X-band IPR system designed by National University of Defense Technology (NUDT), China. Compared with results obtained by alternative polarization measurement scheme, following results can be obtained: the difference of relative amplitude measurement results is smaller than 2 dB and that of relative phase measurement results is smaller than 10?, verifying the validity of instantaneous polarization measurement scheme.
基金supported by the National Key R&D Program of China(Grant No.2020YFB1710400)the Key R&D Project of Hubei Province(Grant No.2023BAB067)。
文摘High-quality optical components have been widely used in various applications;thus,extremely high beam quality is required.Moreover,surface roughness is a key indicator of the surface quality.In this study,the angular distribution of light scattering field intensity was obtained for surfaces having different roughness profiles based on the finite difference time domain(FDTD)method,and the results were compared with those obtained using the generalized Harvey-Shack(GHS)theory.It was shown that the FDTD approach can be used for an accurate simulation of the scattered field of a rough surface,and the superposition of results obtained from many surfaces that have the same roughness level was in good agreement with the result given by the analytic GHS model.A light scattering matrix(LSM)method was proposed based on the FDTD simulation results that could obtain rich surface roughness information.The classification effect of LSM was compared with that of the single-incidence scattering distribution(SISD)based on a ResNet-50 deep learning network.The classification accuracy of the model trained with the LSM dataset was obtained as 95.74%,which was 23.40%higher than that trained using the SISD dataset.Moreover,the effects of different noise types and filtering methods on the classification performance were analyzed,and the LSM was also shown to improve the robustness and generalizability of the trained surface roughness classifier.Overall,the proposed LSM method has important implications for improving the data acquisition scheme of current light scattering measurement systems,and it also has the potential to be used for detection and characterization of surface defects of optical components.
基金Project supported by the TMR network No.ERB FMBX CT97 0157 on‘Asymptotic methods in kinetic theory'of the European Community,the LIAMA(Laboratoire d'Informatique,Automatique et Mathematiques Appliquees),the PRA(Programme de Recherches Avancees),the Aust
文摘The authors first establish a quantum microscopic scattering matrix model in multidimen-sional wave-vector space, which relates the phase space density of each superlattice cell withthat of the neighbouring cells. Then, in the limit of a large number of cells, a SHE (SphericalHarmonics Expansion)-type model of diffusion equations for the particle number density in theposition-energy space is obtained. The crucial features of diffusion constants on retaining thememory of the quantum scattering characteristics of the superlattice elementary cell (like e.g.transmission resonances) are shown in order. Two examples are treated with the analyticallycomputation of the diffusion constants.
文摘The present work deals with the calculation of transition probability between two diabatic potentials coupled by any arbitrary coupling. The method presented in this work is applicable to any type of coupling while for numerical calculations we have assumed the arbitrary coupling as Gaussian coupling. This arbitrary coupling is expressed as a collection of Dirac delta functions and by the use of the transfer matrix technique the transition probability from one diabatic potential to another diabatic potential is calculated. We examine our approach by considering the case of two constant potentials coupled by Gaussian coupling as an arbitrary coupling.
基金Supported by the High Technology Research and Development Progrannne of China (No. 2002AA633120) and the National Natural Science Foundation of China (No. 40276050).
文摘In the conventional single polarization SAR system, only the scattering information of HH polarization or VV polarization can be obtained. Only co-polarizaion scattering cases are considered and cross-polarizaiton (HV and VH polarization) scattering cases are neglected. Therefore, much important information must be lost. Research on full polarization SAR system is an important approach to extract more useful information from SAR imaging. In this paper, the authors derived the full polarization scattering coefficients of 2-D sea fractal surface and simulated the radar cross section (RCS) of different polarizations. They also gave the exact theoretical explanations of the fully polarization scattering characteristics of sea fractal surface, and confirmed that the depolarization can be neglected. The result is the basis of the full SAR system design and SAR imaging.
文摘An analytical technique, referred to as the scattering matrix method (SMM), is developed to analyse the scattering of a planar wave from a conductolution for the nonuniform fering cylinder coated with nonuniform magnetized ferrite. The SMM srite coating can be reduced to the expressions for the scattering and penetrated coefficients in four particular cases: nonuniform magnetized ferrite cylinder, uniform magnetized ferrite-coated conducting cylinder, uniform ferrite cylinder as well as homogeneous dielectric-coated conducting cylinder. The resonant condition for the nonuniform ferrite coating is obtained. The distinctive differences in scattering between the nonuniform ferrite coating and the nonuniform dielectric coating are demonstrated. The effects of applied magnetic fields and wave frequencies on the scattering characteristics for two types of the linear profiles are revealed.
文摘The acoustic vibration signal of tank is disassembled into the sum of intrinsic mode function (IMF) by multi-resolution empirical mode decomposition (EMD) method. The instantaneous frequency is obtained, and feature transformation matrix is figured out by class scatter matrix. Multi- dimensional scale energy vector is mapped into low-dimensional eigenvector, and classification extraction is realized. This method sufficiently separates of different sound target features. The test result indicates that it is effective.
基金supported in part by the National Key R&D Program of China (No. 2018YFA0306301)the National Natural Science Foundation of China (Nos. 12192252, 62022058, 12074252, and 12004245)+2 种基金the Shanghai Municipal Science and Technology Major Project (No. 2019SHZDZX01ZX06)the Shanghai Rising-Star Program (No. 20QA1405400)the Yangyang Development Fund.
文摘Scattering of waves, e.g., light, due to medium inhomogeneity is ubiquitous in physics and isconsidered detrimental for many applications. Wavefront shaping technology is a powerful tool to defeatscattering and focus light through inhomogeneous media, which is vital for optical imaging, communication,therapy, etc. Wavefront shaping based on the scattering matrix (SM) is extremely useful in handling dynamicprocesses in the linear regime. However, the implementation of such a method for controlling light in nonlinearmedia is still a challenge and has been unexplored until now. We report a method to determine the SM ofnonlinear scattering media with second-order nonlinearity. We experimentally demonstrate its feasibility inwavefront control and realize focusing of nonlinear signals through strongly scattering quadratic media.Moreover, we show that statistical properties of this SM still follow the random matrix theory. The scattering-matrix approach of nonlinear scattering medium opens a path toward nonlinear signal recovery, nonlinearimaging, microscopic object tracking, and complex environment quantum information processing.
基金supported by the National Natural Science Foundation of China (60736001)
文摘Usually the polarization of the interference and the target backscattering may vary constantly, so the optimal receiving polarization of the polarization filter should be recalculated, which makes the filter realization very difficult. Also the predict method of the necessary parameters is not explained in most papers, which makes the polarization filter realization impossible. A novel modi- fied interference suppression (MIS) polarization filter is proposed, which resolves these problems by a new polarization designed strategy. The computation of this polarization filter is easy in most conditions, and the necessary parameters estimation method in real time is introduced, which makes polarization filter design possible.
文摘A practical calibration method is proposed for instantaneous polarization radar systems.The method only needs one measurement by using a metal sphere.The distortions of system and the actual polarization scattering matrix(PSM)of target can be obtained.First,an instantaneous polarization radar system is presented.The system can obtain PSM by a single pulse echo.The dual-polarization antenna can transmit and receive two orthogonal polarization waves.The multilayer micro-strip patch antenna is adopted for this kind of radar system.Second,based on the multi-port network theory,the operation and system errors of instantaneous polarization radar system are analyzed.By making assumption on the cross-talk factors of antenna,distortion matrices of R and Tare derived.Finally,the calibration method based on instantaneous polarization measurement is introduced.Simulation results show the performance of this calibration method.The values of calibrated PSM are in agreement with the actual ones after calibration.
基金Project supported by the Open Foundation of Semiconductor Power Device Reliability Engineering Research Center of Ministry of Education, China (Grant No. ERCMEKFJJ2019-(05))the Natural Science Foundation of Guizhou University, China (Grant No. (2019)62)the China Scholarship Council (Grant No. 202106675002)。
文摘The application of magnetic fields, electric fields, and the increase of the electromagnetic wave frequency are upand-coming solutions for the blackout problem. Therefore, this study considers the influence of the external magnetic field on the electron flow and the effect of the external electric field on the electron density distribution, and uses the scattering matrix method(SMM) to perform theoretical calculations and analyze the transmission behavior of terahertz waves under different electron densities, magnetic field distributions, and collision frequencies. The results show that the external magnetic field can improve the transmission of terahertz waves at the low-frequency end. Magnetizing the plasma from the direction perpendicular to the incident path can optimize the right-hand polarized wave transmission. The external electric field can increase the transmittance to some extent, and the increase of the collision frequency can suppress the right-hand polarized wave cyclotron resonance caused by the external magnetic field. By adjusting these parameters, it is expected to alleviate the blackout phenomenon to a certain extent.
基金supported by National Natural Science Foundation of China (Nos. 41674165, 11405038)the China Postdoctoral Science Foundation (No. 2015M570283)
文摘Intensive collisions between electrons and neutral particles in partially ionized plasmas generated in atmospheric/sub-atmospheric pressure environments can sufficiently affect the propagation characteristics of electromagnetic waves, particularly in the sub-wavelength regime. To investigate the collisional effect in such plasmas, we introduce a simplified plasma slab model with a thickness on the order of the wavelength of the incident electromagnetic wave. The scattering matrix method (SMM) is applied to solve the wave equation in the plasma slab with significant nonuniformity. Results show that the collisions between the electrons and the neutral particles, as well as the incident angle and the plasma thickness, can disturb the transmission and reduce reflection significantly.
基金supported in part by the National Basic Research Program of China (grant no.2014CB340205)in part by the Science and Technology on Space Physics Laboratory Fundsin part by the Fundamental Research Funds for the Central Universities (20101156180)
文摘A plasma-based stable,ultra-wideband electromagnetic(EM) wave absorber structure is studied in this paper for stealth applications.The stability is maintained by a multi-layer structure with several plasma layers and dielectric layers distributed alternately.The plasma in each plasma layer is designed to be uniform,whereas it has a discrete nonuniform distribution from the overall view of the structure.The nonuniform distribution of the plasma is the key to obtaining ultra-wideband wave absorption.A discrete Epstein distribution model is put forward to constrain the nonuniform electron density of the plasma layers,by which the wave absorption range is extended to the ultra-wideband.Then,the scattering matrix method(SMM) is employed to analyze the electromagnetic reflection and absorption of the absorber structure.In the simulation,the validation of the proposed structure and model in ultra-wideband EM wave absorption is first illustrated by comparing the nonuniform plasma model with the uniform case.Then,the influence of various parameters on the EM wave reflection of the plasma are simulated and analyzed in detail,verifying the EM wave absorption performance of the absorber.The proposed structure and model are expected to be superior in some realistic applications,such as supersonic aircraft.
基金supported by the Flood Control Foundation of Yellow River Conservancy Commissionthe 2007 Key Supporting Project on Undergraduate Graduation Thesis of North-western Polytechnical University.
文摘Mainstream line is significant for the Yellow River situation forecasting and flood control.An effective statistical feature extraction method is proposed in this paper.In this method, a between-class scattering matrix based projection algorithm is performed to maximize between-class differences, obtaining effective component for classification;then high-order statistics are utilized as the features to describe the mainstream line in the principal component obtained.Experiments are performed to verify the applicability of the algorithm.The results both on synthesized and real scenes indicate that this approach could extract the mainstream line of the Yellow River automatically, and has a high precision in mainstream line detection.
基金supported by the National Natural Science Foundation of China(Nos.61535015,61275149,and 61275086)the Special Scientific Research Plan from Education Department of Shaanxi Provincial Government(No.16JK1083)
文摘Traditional one-way imaging methods become invalid when a target object is completely hidden behind scattering media. In this case, it has been much more challenging, since the light wave is distorted twice.To solve this problem, we propose an imaging method, so-called round-trip imaging, based on the optical transmission matrix of the scattering medium. We show that the object can be recovered directly from the distorted output wave, where no scanning is required during the imaging process. We predict that this method might improve the imaging speed and have potential application for real-time imaging.
基金the National Nature Science Foundations of China(12335002,12375078,11975028)H.Q.Zheng and Z.Xiao are also Supported by"the Fundamental Research Funds for the Central Universities"。
文摘Recently,the LHCb experimental group found an exotic state T_(cc)^(+) from the pp→D^(0)D^(0)π^(+)+X process.A key question is whether it is just a molecule or may have a confined tetraquark ingredient.To investigate this,different methods were used,including a two-channel(D^(∗)+D^(0) and D^(∗)0D^(+))K-matrix unitarization and a single-channel Flatté-like parametrization method analyzed utilizing the pole counting rule and spectral density function sum rule.These analyses demonstrated that T_(cc)^(+) is a molecular state,although the possibility that there may exist an elementary ingredient cannot be excluded,according to an approximate analysis of its production rate.
基金supported by the National Key Research and Development Program of China(Grant Nos.2016YFA0301102,and 2017YFA0303800)the National Natural Science Fund for Distinguished Young Scholar(Grant No.11925403)+3 种基金the National Natural Science Foundation of China(Grant Nos.11974193,11904181,11904183,91856101,and 11774186)the Natural Science Foundation of Tianjin for Distinguished Young Scientists(Grant No.18JCJQJC45700)the National Postdoctoral Program for Innovative Talents(Grant No.BX20180148)the China Postdoctoral Science Foundation(Grant Nos.2018M640224,and 2018M640229)。
文摘Metasurfaces,which are planar arrays of subwavelength artificial structures,have emerged as excellent platforms for the integration and miniaturization of electromagnetic devices and provided ample possibilities for single-dimensional and multi-dimensional manipulations of electromagnetic waves.However,owing to the limited interactions between planar thin metallic nanostructures and electromagnetic waves as well as intrinsic losses in metals,metasurfaces exhibit disadvantages in terms of efficiency,controllability,and functionality.Recent advances in this field show that few-layer metasurfaces can overcome these drawbacks.Few-layer metasurfaces composed of more than one functional layer enable more degrees of design freedom.Hence,they possess unprecedented capabilities for electromagnetic wave manipulation,which have considerable impact in the area of nanophotonics.This article reviews recent advances in few-layer metasurfaces from the viewpoint of their scattering properties.The scattering matrix theory is briefly introduced,and the advantages and drawbacks of few-layer metasurfaces for the realization of arbitrary scattering properties are discussed.Then,a detailed overview of typical few-layer metasurfaces with various scattering properties and their design principles is provided.Finally,an outlook on the future directions and challenges in this promising research area is presented.
文摘The symmetry of rotation vibration spectra of molecule SiO_2 is described by means of group U(5). Grouptheory approach is adopted to give the matrix elements of stimulated Raman scattering in fiber. The cross sectionsand gain coefficients of stimulated Raman scattering are given. The results are in good agreement with the experi-mental values.
文摘The work presented previously by the authors(Cai and Liou,1982)has been extended in this paper. By making use of our improved model the calculations on scattering phase matrices of hexagonal prism ice crystals(HPIC)have been conducted for monodisperse and polydisperse systems.Compared with the model of Cai and Liou,the required computational quantity is decreased by about two orders of magni- tude and the errors of results are less for the new model.Meanwhile,the scattering phase matrices of triangular pyramid ice crystals(TPIC)are also computed in the paper,and the comparison between the scatterings of the two forms of ice crystals is performed.