Recently, Tavakoli et al.proposed a self-testing scheme in the prepare-and-measure scenario, showing that self-testing is not necessarily based on entanglement and violation of a Bell inequality [Phys.Rev.A 98 062307(...Recently, Tavakoli et al.proposed a self-testing scheme in the prepare-and-measure scenario, showing that self-testing is not necessarily based on entanglement and violation of a Bell inequality [Phys.Rev.A 98 062307(2018)].They realized the self-testing of preparations and measurements in an N → 1(N ≥ 2) random access code(RAC), and provided robustness bounds in a 2 → 1 RAC.Since all N → 1 RACs with shared randomness are combinations of 2 → 1 and 3 → 1 RACs, the3 → 1 RAC is just as important as the 2 → 1 RAC.In this paper, we find a set of preparations and measurements in the3 → 1 RAC, and use them to complete the robustness self-testing analysis in the prepare-and-measure scenario.The method is robust to small but inevitable experimental errors.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61572081,61672110,and 61671082)
文摘Recently, Tavakoli et al.proposed a self-testing scheme in the prepare-and-measure scenario, showing that self-testing is not necessarily based on entanglement and violation of a Bell inequality [Phys.Rev.A 98 062307(2018)].They realized the self-testing of preparations and measurements in an N → 1(N ≥ 2) random access code(RAC), and provided robustness bounds in a 2 → 1 RAC.Since all N → 1 RACs with shared randomness are combinations of 2 → 1 and 3 → 1 RACs, the3 → 1 RAC is just as important as the 2 → 1 RAC.In this paper, we find a set of preparations and measurements in the3 → 1 RAC, and use them to complete the robustness self-testing analysis in the prepare-and-measure scenario.The method is robust to small but inevitable experimental errors.