The number of traditionally excellent coastal lithologic nuclear power plants is limited.It is a trend to develop nuclear power plants on soil sites in inland areas.Therefore,the seismic safety and adaptability of non...The number of traditionally excellent coastal lithologic nuclear power plants is limited.It is a trend to develop nuclear power plants on soil sites in inland areas.Therefore,the seismic safety and adaptability of non-rock nuclear power plant(NPP)sites are the key concerns of nuclear safety researchers.Although the five site categories are clearly defined in the AP1000 design control documents,the effects of nuclear power five site conditions and soil nonlinearity on the seismic response characteristics of nuclear island buildings have not been systematically considered in previous related studies.In this study,targeting the AP1000 nuclear island structure as the research object,three-dimensional finite element models of a nuclear island structure at five types of sites(firm rock site(FR),soft rock site(SR),soft-to-medium soil site(SMS),upper bound soft-to-medium site(SMS-UB),and soft soil site(SS))are established.The partitioned analysis method of soil-structure interaction(PASSI)in the time-domain is used to investigate the effects of site hardness and nonlinearity on the acceleration,displacement,and acceleration response spectrum of the nuclear island structure under seismic excitation.The incremental equilibrium equation and explicit decoupling method are used to analyze the soil nonlinearity described by the Davidenkov model with simplified loading-reloading rules.The results show that,in the linear case,with the increase of site hardness,the peak ground acceleration(PGA)and the peak of acceleration response spectrum of the nuclear island structure increase except for the FR site,while the maximum displacement decreases.In nonlinear analysis,as the site hardness increases,the PGA,maximum displacement,and the peak of acceleration response spectrum of the nuclear island structure increase.The peak value of the acceleration response spectrum in the nonlinear case is greater than that in the linear case for FR,while smaller for SR and soil sites.The site nonlinearity reduces the peak values of the response spectrum for SR and soil sites much more as the site hardness decreases.The results of this study can provide a reference for design of nuclear island structures on soil and rock sites.展开更多
Integral method is employed in this paper to alleviate the error accumulation of differential equation discretization about time variant t in Time Domain Finite Element Method (TDFEM) for electromagnetic simulation. T...Integral method is employed in this paper to alleviate the error accumulation of differential equation discretization about time variant t in Time Domain Finite Element Method (TDFEM) for electromagnetic simulation. The error growth and the stability condition of the presented method and classical central difference scheme are analyzed. The electromagnetic responses of 2D lossless cavities are investigated with TDFEM; high accuracy is validated with numerical results presented.展开更多
The purpose of this paper is to study the almost sure T-stability and convergence of Ishikawa-type and Mann-type random iterative algorithms for some kind of C-weakly contractive type random operators in a separable B...The purpose of this paper is to study the almost sure T-stability and convergence of Ishikawa-type and Mann-type random iterative algorithms for some kind of C-weakly contractive type random operators in a separable Banach space. Under suitable conditions, the Bochner integrability of random fixed points for this kind of random operators and the almost sure T-stability and convergence for these two kinds of random iterative algorithms are proved.展开更多
The construction of modern cities emphasizes the nature and harmony among the“people”,“things”and“environment”,reflecting the harmony and unity of the formal beauty,functional beauty and surrounding environment ...The construction of modern cities emphasizes the nature and harmony among the“people”,“things”and“environment”,reflecting the harmony and unity of the formal beauty,functional beauty and surrounding environment of architecture.Based on the introduction of the design concept of the assembled pedestrian overbridge,through the Jianhua Building Materials Group’s first“pre-fabricated low-rise tower-stayed pedestrian landscape overbridge”project in China,this paper proposes a solution that can improve the landscape design of the overbridge and reduce the construction complexity of the overbridge,the assembly product supply and the construction process“integration”under the premise of ensuring the safety and stability of the pedestrian overbridge,whose prefabricated production and assembly construction,shortening the construction period,reducing energy consumption,reducing pollution,and obtaining good social comprehensive benefits.展开更多
During the past decade, increasing attention has been given to the development of meshless methods using radial basis functions for the numerical solution of Partial Differential Equations (PDEs). A level set method...During the past decade, increasing attention has been given to the development of meshless methods using radial basis functions for the numerical solution of Partial Differential Equations (PDEs). A level set method is a promising design tool for tracking, modelling and simulating the motion of free boundaries in fluid mechanics, combustion, computer animation and image processing. In the conventional level set methods, the level set equation is solved to evolve the interface using a capturing Eulerian approach. The solving procedure requires an appropriate choice of the upwind schemes, reinitialization, etc. Our goal is to include Multiquadric Radial Basis Functions (MQ RBFs) into the level set method to construct a more efficient approach and stabilize the solution process with the adaptive greedy algorithm. This paper presents an alternative approach to the conventional level set methods for solving moving-boundary problems. The solution was compared to the solution calculated by the exact explicit lime integration scheme. The examples show that MQ RBFs and adaptive greedy algorithm is a very promising calculation scheme.展开更多
Nowadays, the major part and most standard networks usually used in several applications are Wireless Sensor Networks (WSNs). It consists of different nodes which communicate each other for data transmission. There is...Nowadays, the major part and most standard networks usually used in several applications are Wireless Sensor Networks (WSNs). It consists of different nodes which communicate each other for data transmission. There is no access point to control the nodes in the network. This makes the network to undergo severe attacks from both passive and active devices. Due to this attack, the network undergoes downgrade performance. To overcome these attacks, security based routing protocol is proposed with the security based wormhole detection scheme. This scheme comprises of two phases. In this approach, the detection of wormhole attacks is deployed for having correct balance between safe route and stability. Also, to ensure packets integrity cryptographic scheme is used as well as authenticity while travelling from source to destination nodes. By extensive simulation, the proposed scheme achieves enhanced performance of packet delivery ratio, end to end delay, throughput and overhead than the existing schemes.展开更多
Discontinuous deformation analysis(DDA) is a numerical method for analyzing the deformation of block system. It employs unified dynamic formulation for both static and dynamic analysis, in which the so-called kinetic ...Discontinuous deformation analysis(DDA) is a numerical method for analyzing the deformation of block system. It employs unified dynamic formulation for both static and dynamic analysis, in which the so-called kinetic damping is adopted for absorbing dynamic energy. The DDA dynamic equations are integrated directly by the constant acceleration algorithm of Newmark family integrators. In order to have an insight into the DDA time integration scheme, the performance of Newmark time integration scheme for dynamic equations with kinetic damping is systematically investigated, formulae of stability, bifurcation, spectral radius, critical kinetic damping and algorithmic damping are presented. Combining with numerical examples, recognition and suggestions of Newmark integration scheme application in the DDA static and dynamic analysis are proposed.展开更多
An integrated vertical-slantwise convective parameterization scheme, based on the vertical Kuo-Anthes and the slantwise Nordeng convective parameterization schemes, is introduced into the MM5 model. By employing the M...An integrated vertical-slantwise convective parameterization scheme, based on the vertical Kuo-Anthes and the slantwise Nordeng convective parameterization schemes, is introduced into the MM5 model. By employing the MM5 model with the proposed scheme, numerical simulations of a snowstorm event that occurred over southern China on 28-29 January 2008 and of Typhoon Haitang (2005) are conducted. The results indicate that during the snowstorm event, the atmosphere was convectively stable in the vertical direction but with conditional symmetric instability (CSI) in the lower troposphere, and when the area of CSI developed and extended to upper levels, strong rising motion occurred and triggered the release of large amount of energy, producing enhanced convective precipitation with the total precipitation much closer to the observation. The development and strengthening of CSI corresponded to changes in the intensity of snowfall, convergence, and ascending motions of air, revealing that CSI was responsible for the initiation and growth of the snowstorm. The results from a 72-h explicit simulation of Typhoon Haitang indicate that CSI occurred mainly at lower levels with a well-defined spiral structure, and it tended to have a larger impact on the intensity of typhoon than on its track. The minimum pressure at the typhoon center for the 72-h runs with the integrated vertical-slantwise convective parameterization scheme was on average 3 hPa (maximum 8 hPa) lower than that from the runs with only the vertical cumulus parameterization scheme. Introducing the influence of CSI into the model has improved the warm core structure at the middle and upper levels of the typhoon, with stronger and persistent upward motions causing increased precipitation, and the latent heat released through convection in turn made the typhoon develop further.展开更多
Power system faults can often result in excessively high currents.If sustained for a long time,such high currents can damage system equipment.Thus,it is desirable to operate the relays in the minimum possible time.In ...Power system faults can often result in excessively high currents.If sustained for a long time,such high currents can damage system equipment.Thus,it is desirable to operate the relays in the minimum possible time.In this paper,a busbar splitting approach is used for adaptive relay setting and co-ordination purposes for a system integrity protec-tion scheme(SIPS).Whenever a fault occurs,the busbar splitting scheme splits a bus to convert a loop into a radial structure.The splitting schemes are chosen such that the net fault current is also reduced.Busbar splitting elimi-nates the dependency upon minimum breakpoints set(MBPS)and reduces the relay operating time,thus making it adaptive.The proposed methodology is incorporated into the IEEE 14-bus and IEEE 30-bus systems with single and multiple fault conditions.The modeling and simulation carried out in ETAP,and the results of the proposed busbar splitting-based relay co-ordination are compared with the MBPS splitting-based relay co-ordination.展开更多
A new integrated scheme based on resource-reservation and adaptive network flow routing to alleviate contention in optical burst switching networks is proposed. The objective of the proposed scheme is to reduce the ov...A new integrated scheme based on resource-reservation and adaptive network flow routing to alleviate contention in optical burst switching networks is proposed. The objective of the proposed scheme is to reduce the overall burst loss in the network and at the same time to avoid the packet out-of-sequence arrival problem. Simulations are carried out to assess the feasibility of the proposed scheme. Its performance is compared with that of contention resolution schemes based on conventional routing. Through extensive simulations, it is shown that the proposed scheme not only provides significantly better burst loss performance than the basic equal proportion and hop-length based traffic routing algorithms, but also is void of any packet re-orderings.展开更多
Wide area monitoring(WAM) offers many opportunities to improve the performance of power system protection. This paper presents some of these opportunities and the motivation for their development. This methods include...Wide area monitoring(WAM) offers many opportunities to improve the performance of power system protection. This paper presents some of these opportunities and the motivation for their development. This methods include monitoring the suitability of relay characteristics,supervisory control of backup protection, more adaptive and intelligent system protection and the creation of novel system integrity protection scheme. The speed of response required for primary protection means that the role WAM in enhancing protection is limited to backup and system protection. The opportunities offered by WAM for enhancing protection are attractive because of the emerging challenges faced by the modern power system protection. The increasingly variable operating conditions of power systems are making it ever more difficult to select relay characteristics that will be a suitable compromise for all loading conditions and contingencies. The maloperation of relays has contributed to the inception and evolution of 70 % of blackouts,thus the supervision of the backup protection may prove a valuable tool for preventing or limiting the scale of blackouts. The increasing interconnection and complexity of modern power systems has made them more vulnerable to wide area disturbances and this has contributed to several recent blackouts. The proper management of these wide area disturbances is beyond the scope of most of the existing protection and new, adaptive system integrity protection schemes are needed to protect power system security.展开更多
Electric power grids are critical infrastructure for delivering energy from generation stations to load centers. To maximize utilization of assets, it is desirable to increase the power transferred over transmission s...Electric power grids are critical infrastructure for delivering energy from generation stations to load centers. To maximize utilization of assets, it is desirable to increase the power transferred over transmission systems. Reliable protection of transmission systems is essential for safeguarding the integrity and reliability of the power grid. Distance protection is the most widely used scheme for protecting transmission lines. Most existing protection systems use local measurements to make a decision while pilot protection is used in some circumstances. Distance protection may fail under stressed operating conditions, which could lead to cascading faults. This paper proposes a system integrity protection scheme by utilizing wide area measurements. The scheme partitions the system into subnetworks or protection zones and employs current measurements to derive a fault identification vector indicating the faulted zone. Then the fault location is pinpointed based on wide area measurements and network data. The proposed method is able to deal with multiple, simultaneous faults, and is applicable to both transposed and untransposed lines. Evaluation studies based on simulation studies are presented.展开更多
The investigation of exact solitary wave solutions to the nonlinear partial differential equation plays an important role to understand any physical phenomena in diverse applied fields.The current work is re-lated to ...The investigation of exact solitary wave solutions to the nonlinear partial differential equation plays an important role to understand any physical phenomena in diverse applied fields.The current work is re-lated to the most prominent nonlinear model named as the van der Waals normal form that appeared naturally and also industrially for the granular materials.In oceanography,the sea ice,sand and snow are some examples of aforesaid matter among others.We employ two novel integration approaches named as the simplest equation method and the exp a function method to explore the above mentioned van der Waals model.As a backlash,many new solitary waves and other exact solutions are retrieved.The ob-tained results depict that the used approaches are simple and effective to deal with nonlinear models.Also,the numerical simulation of some solutions via two and three dimension graphical configurations are presented for certainty and exactness.展开更多
An efficient and accurate exponential wave integrator Fourier pseudospectral (EWI-FP) method is proposed and analyzed for solving the symmetric regularized-long-wave (SRLW) equation, which is used for modeling the...An efficient and accurate exponential wave integrator Fourier pseudospectral (EWI-FP) method is proposed and analyzed for solving the symmetric regularized-long-wave (SRLW) equation, which is used for modeling the weakly nonlinear ion acoustic and space-charge waves. The numerical method here is based on a Gautschi-type exponential wave integrator for temporal approximation and the Fourier pseudospectral method for spatial discretization. The scheme is fully explicit and efficient due to the fast Fourier transform. Numerical analysis of the proposed EWI-FP method is carried out and rigorous error estimates are established without CFL-type condition by means of the mathematical induction. The error bound shows that EWI-FP has second order accuracy in time and spectral accuracy in space. Numerical results are reported to confirm the theoretical studies and indicate that the error bound here is optimal.展开更多
基金National Natural Science Foundation of China under Grant Nos.51978337 and U2039209。
文摘The number of traditionally excellent coastal lithologic nuclear power plants is limited.It is a trend to develop nuclear power plants on soil sites in inland areas.Therefore,the seismic safety and adaptability of non-rock nuclear power plant(NPP)sites are the key concerns of nuclear safety researchers.Although the five site categories are clearly defined in the AP1000 design control documents,the effects of nuclear power five site conditions and soil nonlinearity on the seismic response characteristics of nuclear island buildings have not been systematically considered in previous related studies.In this study,targeting the AP1000 nuclear island structure as the research object,three-dimensional finite element models of a nuclear island structure at five types of sites(firm rock site(FR),soft rock site(SR),soft-to-medium soil site(SMS),upper bound soft-to-medium site(SMS-UB),and soft soil site(SS))are established.The partitioned analysis method of soil-structure interaction(PASSI)in the time-domain is used to investigate the effects of site hardness and nonlinearity on the acceleration,displacement,and acceleration response spectrum of the nuclear island structure under seismic excitation.The incremental equilibrium equation and explicit decoupling method are used to analyze the soil nonlinearity described by the Davidenkov model with simplified loading-reloading rules.The results show that,in the linear case,with the increase of site hardness,the peak ground acceleration(PGA)and the peak of acceleration response spectrum of the nuclear island structure increase except for the FR site,while the maximum displacement decreases.In nonlinear analysis,as the site hardness increases,the PGA,maximum displacement,and the peak of acceleration response spectrum of the nuclear island structure increase.The peak value of the acceleration response spectrum in the nonlinear case is greater than that in the linear case for FR,while smaller for SR and soil sites.The site nonlinearity reduces the peak values of the response spectrum for SR and soil sites much more as the site hardness decreases.The results of this study can provide a reference for design of nuclear island structures on soil and rock sites.
基金the National Natural Science Foundation of China (No.60601024).
文摘Integral method is employed in this paper to alleviate the error accumulation of differential equation discretization about time variant t in Time Domain Finite Element Method (TDFEM) for electromagnetic simulation. The error growth and the stability condition of the presented method and classical central difference scheme are analyzed. The electromagnetic responses of 2D lossless cavities are investigated with TDFEM; high accuracy is validated with numerical results presented.
基金Project supported by the Natural Science Foundation of Yibin University (No. 2011Z03)
文摘The purpose of this paper is to study the almost sure T-stability and convergence of Ishikawa-type and Mann-type random iterative algorithms for some kind of C-weakly contractive type random operators in a separable Banach space. Under suitable conditions, the Bochner integrability of random fixed points for this kind of random operators and the almost sure T-stability and convergence for these two kinds of random iterative algorithms are proved.
文摘The construction of modern cities emphasizes the nature and harmony among the“people”,“things”and“environment”,reflecting the harmony and unity of the formal beauty,functional beauty and surrounding environment of architecture.Based on the introduction of the design concept of the assembled pedestrian overbridge,through the Jianhua Building Materials Group’s first“pre-fabricated low-rise tower-stayed pedestrian landscape overbridge”project in China,this paper proposes a solution that can improve the landscape design of the overbridge and reduce the construction complexity of the overbridge,the assembly product supply and the construction process“integration”under the premise of ensuring the safety and stability of the pedestrian overbridge,whose prefabricated production and assembly construction,shortening the construction period,reducing energy consumption,reducing pollution,and obtaining good social comprehensive benefits.
文摘During the past decade, increasing attention has been given to the development of meshless methods using radial basis functions for the numerical solution of Partial Differential Equations (PDEs). A level set method is a promising design tool for tracking, modelling and simulating the motion of free boundaries in fluid mechanics, combustion, computer animation and image processing. In the conventional level set methods, the level set equation is solved to evolve the interface using a capturing Eulerian approach. The solving procedure requires an appropriate choice of the upwind schemes, reinitialization, etc. Our goal is to include Multiquadric Radial Basis Functions (MQ RBFs) into the level set method to construct a more efficient approach and stabilize the solution process with the adaptive greedy algorithm. This paper presents an alternative approach to the conventional level set methods for solving moving-boundary problems. The solution was compared to the solution calculated by the exact explicit lime integration scheme. The examples show that MQ RBFs and adaptive greedy algorithm is a very promising calculation scheme.
文摘Nowadays, the major part and most standard networks usually used in several applications are Wireless Sensor Networks (WSNs). It consists of different nodes which communicate each other for data transmission. There is no access point to control the nodes in the network. This makes the network to undergo severe attacks from both passive and active devices. Due to this attack, the network undergoes downgrade performance. To overcome these attacks, security based routing protocol is proposed with the security based wormhole detection scheme. This scheme comprises of two phases. In this approach, the detection of wormhole attacks is deployed for having correct balance between safe route and stability. Also, to ensure packets integrity cryptographic scheme is used as well as authenticity while travelling from source to destination nodes. By extensive simulation, the proposed scheme achieves enhanced performance of packet delivery ratio, end to end delay, throughput and overhead than the existing schemes.
基金supported by the Fundamental Research Funds for Central Public Welfare Research Institutes(Grant No.CKSF2014053/CL)
文摘Discontinuous deformation analysis(DDA) is a numerical method for analyzing the deformation of block system. It employs unified dynamic formulation for both static and dynamic analysis, in which the so-called kinetic damping is adopted for absorbing dynamic energy. The DDA dynamic equations are integrated directly by the constant acceleration algorithm of Newmark family integrators. In order to have an insight into the DDA time integration scheme, the performance of Newmark time integration scheme for dynamic equations with kinetic damping is systematically investigated, formulae of stability, bifurcation, spectral radius, critical kinetic damping and algorithmic damping are presented. Combining with numerical examples, recognition and suggestions of Newmark integration scheme application in the DDA static and dynamic analysis are proposed.
基金Supported by the National Nature Science Foundation of China (41005029 and 40830235)National Basic Research and Development (973) Program of China (2009CB421502)
文摘An integrated vertical-slantwise convective parameterization scheme, based on the vertical Kuo-Anthes and the slantwise Nordeng convective parameterization schemes, is introduced into the MM5 model. By employing the MM5 model with the proposed scheme, numerical simulations of a snowstorm event that occurred over southern China on 28-29 January 2008 and of Typhoon Haitang (2005) are conducted. The results indicate that during the snowstorm event, the atmosphere was convectively stable in the vertical direction but with conditional symmetric instability (CSI) in the lower troposphere, and when the area of CSI developed and extended to upper levels, strong rising motion occurred and triggered the release of large amount of energy, producing enhanced convective precipitation with the total precipitation much closer to the observation. The development and strengthening of CSI corresponded to changes in the intensity of snowfall, convergence, and ascending motions of air, revealing that CSI was responsible for the initiation and growth of the snowstorm. The results from a 72-h explicit simulation of Typhoon Haitang indicate that CSI occurred mainly at lower levels with a well-defined spiral structure, and it tended to have a larger impact on the intensity of typhoon than on its track. The minimum pressure at the typhoon center for the 72-h runs with the integrated vertical-slantwise convective parameterization scheme was on average 3 hPa (maximum 8 hPa) lower than that from the runs with only the vertical cumulus parameterization scheme. Introducing the influence of CSI into the model has improved the warm core structure at the middle and upper levels of the typhoon, with stronger and persistent upward motions causing increased precipitation, and the latent heat released through convection in turn made the typhoon develop further.
文摘Power system faults can often result in excessively high currents.If sustained for a long time,such high currents can damage system equipment.Thus,it is desirable to operate the relays in the minimum possible time.In this paper,a busbar splitting approach is used for adaptive relay setting and co-ordination purposes for a system integrity protec-tion scheme(SIPS).Whenever a fault occurs,the busbar splitting scheme splits a bus to convert a loop into a radial structure.The splitting schemes are chosen such that the net fault current is also reduced.Busbar splitting elimi-nates the dependency upon minimum breakpoints set(MBPS)and reduces the relay operating time,thus making it adaptive.The proposed methodology is incorporated into the IEEE 14-bus and IEEE 30-bus systems with single and multiple fault conditions.The modeling and simulation carried out in ETAP,and the results of the proposed busbar splitting-based relay co-ordination are compared with the MBPS splitting-based relay co-ordination.
文摘A new integrated scheme based on resource-reservation and adaptive network flow routing to alleviate contention in optical burst switching networks is proposed. The objective of the proposed scheme is to reduce the overall burst loss in the network and at the same time to avoid the packet out-of-sequence arrival problem. Simulations are carried out to assess the feasibility of the proposed scheme. Its performance is compared with that of contention resolution schemes based on conventional routing. Through extensive simulations, it is shown that the proposed scheme not only provides significantly better burst loss performance than the basic equal proportion and hop-length based traffic routing algorithms, but also is void of any packet re-orderings.
文摘Wide area monitoring(WAM) offers many opportunities to improve the performance of power system protection. This paper presents some of these opportunities and the motivation for their development. This methods include monitoring the suitability of relay characteristics,supervisory control of backup protection, more adaptive and intelligent system protection and the creation of novel system integrity protection scheme. The speed of response required for primary protection means that the role WAM in enhancing protection is limited to backup and system protection. The opportunities offered by WAM for enhancing protection are attractive because of the emerging challenges faced by the modern power system protection. The increasingly variable operating conditions of power systems are making it ever more difficult to select relay characteristics that will be a suitable compromise for all loading conditions and contingencies. The maloperation of relays has contributed to the inception and evolution of 70 % of blackouts,thus the supervision of the backup protection may prove a valuable tool for preventing or limiting the scale of blackouts. The increasing interconnection and complexity of modern power systems has made them more vulnerable to wide area disturbances and this has contributed to several recent blackouts. The proper management of these wide area disturbances is beyond the scope of most of the existing protection and new, adaptive system integrity protection schemes are needed to protect power system security.
文摘Electric power grids are critical infrastructure for delivering energy from generation stations to load centers. To maximize utilization of assets, it is desirable to increase the power transferred over transmission systems. Reliable protection of transmission systems is essential for safeguarding the integrity and reliability of the power grid. Distance protection is the most widely used scheme for protecting transmission lines. Most existing protection systems use local measurements to make a decision while pilot protection is used in some circumstances. Distance protection may fail under stressed operating conditions, which could lead to cascading faults. This paper proposes a system integrity protection scheme by utilizing wide area measurements. The scheme partitions the system into subnetworks or protection zones and employs current measurements to derive a fault identification vector indicating the faulted zone. Then the fault location is pinpointed based on wide area measurements and network data. The proposed method is able to deal with multiple, simultaneous faults, and is applicable to both transposed and untransposed lines. Evaluation studies based on simulation studies are presented.
文摘The investigation of exact solitary wave solutions to the nonlinear partial differential equation plays an important role to understand any physical phenomena in diverse applied fields.The current work is re-lated to the most prominent nonlinear model named as the van der Waals normal form that appeared naturally and also industrially for the granular materials.In oceanography,the sea ice,sand and snow are some examples of aforesaid matter among others.We employ two novel integration approaches named as the simplest equation method and the exp a function method to explore the above mentioned van der Waals model.As a backlash,many new solitary waves and other exact solutions are retrieved.The ob-tained results depict that the used approaches are simple and effective to deal with nonlinear models.Also,the numerical simulation of some solutions via two and three dimension graphical configurations are presented for certainty and exactness.
文摘An efficient and accurate exponential wave integrator Fourier pseudospectral (EWI-FP) method is proposed and analyzed for solving the symmetric regularized-long-wave (SRLW) equation, which is used for modeling the weakly nonlinear ion acoustic and space-charge waves. The numerical method here is based on a Gautschi-type exponential wave integrator for temporal approximation and the Fourier pseudospectral method for spatial discretization. The scheme is fully explicit and efficient due to the fast Fourier transform. Numerical analysis of the proposed EWI-FP method is carried out and rigorous error estimates are established without CFL-type condition by means of the mathematical induction. The error bound shows that EWI-FP has second order accuracy in time and spectral accuracy in space. Numerical results are reported to confirm the theoretical studies and indicate that the error bound here is optimal.