In this paper, the improved Background Oriented Schlieren technique called CBOS (Colored Background Oriented Schlieren) is described and used to reconstruct the density fields of three-dimensional flows. The Backgroun...In this paper, the improved Background Oriented Schlieren technique called CBOS (Colored Background Oriented Schlieren) is described and used to reconstruct the density fields of three-dimensional flows. The Background Oriented Schlieren technique (BOS) allows the measurement of the light deflection caused by density gradients in a compressible flow. For this purpose the distortion of the image of a background pattern observed through the flow is used. In order to increase the performance of the conventional Background Oriented Schlieren technique, the monochromatic background is replaced by a colored dot pattern. The different colors are treated separately using suitable correlation algorithms. Therefore, the precision and the spatial resolution can be highly increased. Furthermore a special arrangement of the different colored dot patterns in the background allows astigmatism in the region with high density gradients to be overcome. For the first time an algebraic reconstruction technique (ART) is then used to reconstruct the density field of unsteady flows around a spike-tipped model from CBOS measurements. The obtained images reveal the interaction between the free-stream flow and the high-pressure region in front of the model, which leads to large-scale instabilities in the flow.展开更多
An experimental system based on the background-oriented schlieren(BOS) technique is built to reconstruct the density and temperature distribution of a flame-induced distorted flow field which has a density gradient....An experimental system based on the background-oriented schlieren(BOS) technique is built to reconstruct the density and temperature distribution of a flame-induced distorted flow field which has a density gradient. The cross-correlation algorithm with sub-pixel accuracy is introduced and used to calculate the background-element displacement of a disturbed image and a fourth-order difference scheme is also developed to solve the Poisson equation. An experiment for a disturbed flow field caused by a burning candle is performed to validate the built BOS system and the results indicate that density and temperature distribution of the disturbed flow field can be reconstructed accurately. A notable conclusion is that in order to make the reconstructed results have a satisfactory accuracy, the inquiry step length should be less than the size of the interrogation window.展开更多
The schlieren interferograms used to be analyzed in a qualitative way. In this paper, by means of the powerful computational ability and the large memory of computer; the image processing method is investigated for th...The schlieren interferograms used to be analyzed in a qualitative way. In this paper, by means of the powerful computational ability and the large memory of computer; the image processing method is investigated for the digitalization of an axisymmetric schlieren interferogram and the determination of the density field. This method includes the 2-D low-pass filtering, the thinning of interferometric fringes, the extraction of physical information and the numerical integration of the density field. The image processing results show that the accuracy of the quantitative analysis of the schlieren interferogram can be improved and a lot of time can be saved in dealing with optical experimental results. Therefore, the algorithm used here is useful and efficient.展开更多
To optimize the leek peeling performance, a new nozzle has been developed in which the nozzle has a design Mach number of 1.68, an inner diameter of 2.0 mm at the throat, and an inner diameter of 2.3 mm at the exit. E...To optimize the leek peeling performance, a new nozzle has been developed in which the nozzle has a design Mach number of 1.68, an inner diameter of 2.0 mm at the throat, and an inner diameter of 2.3 mm at the exit. Experiments have been conducted over a range of nozzle pressure ratios from 3.0 to 6.0. Flow field issued from the new nozzle is quantitatively visualized by the rainbow schlieren deflectometry and compared with that from a conventional nozzle. Density fields in the free jets are reconstructed by the Abel inversion method for the schlieren images with the horizontal rainbow filter. The density values at the exit of the conventional nozzle obtained by the rainbow schlieren are compared with the analytical results by the flow model proposed in the past. In addition, Pitot probe surveys along the jet centerline were made to obtain the impact pressure distributions. The Mach number and velocity distributions along the jet centerline are obtained from a combination of the density and Pitot pressure data to clarify the fundamental flow structure of leek peeler nozzle jets.展开更多
The jet from a round Laval nozzle followed by a cylindrical duct with an inner diameter of 10 mm and a length of 50 mm is investigated experimentally. The Laval nozzle has a design Mach number of 1.5. Quantitative flo...The jet from a round Laval nozzle followed by a cylindrical duct with an inner diameter of 10 mm and a length of 50 mm is investigated experimentally. The Laval nozzle has a design Mach number of 1.5. Quantitative flow visualization of the jet issued from the duct exit is performed over a range of nozzle pressure ratios from 2.0 to 4.5 using the rainbow schlieren deflectometry combined with the computed tomography to investigate the jet three-dimensional structure. The flow features of the near-field shock systems in the jets are displayed with the density contour plot at the cross-section including the jet centerline. Effects of the nozzle pressure ratio on the density profile along the jet centerline are clarified quantitatively. In addition, a comparison between the present experiment and the previous one with a conventional Laval nozzle for jet centerline density profiles is carried out to examine the effect of the cylindrical duct. Furthermore, the three-dimensional structures of overexpanded and underexpanded jets are demonstrated with the isopycnic surfaces to visualize the internal flow features.展开更多
Instantaneous three-dimensional (3D) density distributions of a shock-cell structure of perfectly and imperfectly expanded supersonic microjets escaping into an ambient space are measured. For the 3D observation of su...Instantaneous three-dimensional (3D) density distributions of a shock-cell structure of perfectly and imperfectly expanded supersonic microjets escaping into an ambient space are measured. For the 3D observation of supersonic microjets, non-scanning 3D computerized tomography (CT) technique using a 20-directional quantitative schlieren optical system with flashlight source is employed for simultaneous schlieren photography. The 3D density distributions data of the microjets are obtained by 3D-CT reconstruction of the projection’s images using maximum likelihood-expectation maximization. Axisymmetric convergent-divergent (Laval) circular and square micro nozzles with operating nozzle pressure ratio 5.0, 4.5, 4.0, 3.67, and 3.5 have been studied. This study examines perfectly expanded, overexpanded, and underexpanded supersonic microjets issued from micro nozzles with fully expanded jet Mach numbers <em>M</em><em><sub>j</sub></em> ranging from 1.47 - 1.71, where the design Mach number is <em>M<sub>d</sub></em> = 1.5. A complex phenomenon for free square microjets called axis switching is clearly observed with two types “upright” and “diagonal” of “cross-shaped”. The initial axis-switching is 45<span style="white-space:nowrap;">°</span> within the first shock-cell range. In addition, from the symmetry and diagonal views of square microjets for the first shock-cells, two different patterns of shock waves are viewed. The shock-cell spacing and supersonic core length for all nozzle pressure ratios are investigated and reported.展开更多
A schlieren detection algorithm is proposed for the ground-to-air background oriented schlieren(BOS) system to achieve high-speed airplane shock waves visualization. The proposed method consists of three steps. Firstl...A schlieren detection algorithm is proposed for the ground-to-air background oriented schlieren(BOS) system to achieve high-speed airplane shock waves visualization. The proposed method consists of three steps. Firstly, image registration is incorporated for reducing errors caused by the camera motion.Then, the background subtraction dual-model single Gaussian model(BS-DSGM) is proposed to build a precise background model. The BS-DSGM could prevent the background model from being contaminated by the shock waves. Finally, the twodimensional orthogonal discrete wavelet transformation is used to extract schlieren information and averaging schlieren data. Experimental results show our proposed algorithm is able to detect the aircraft in-flight and to extract the schlieren information. The precision of schlieren detection algorithm is 0.96. Three image quality evaluation indices are chosen for quantitative analysis of the shock waves visualization. The white Gaussian noise is added in the frames to validate the robustness of the proposed algorithm.Moreover, we adopt two times and four times down sampling to simulate different imaging distances for revealing how the imaging distance affects the schlieren information in the BOS system.展开更多
The acoustic propagation characteristics of a finite one-dimensional water-glass phononic crystal(PC)are studied using the Schlieren visualization method,which is fast and non-invasive.The band structures of this PC a...The acoustic propagation characteristics of a finite one-dimensional water-glass phononic crystal(PC)are studied using the Schlieren visualization method,which is fast and non-invasive.The band structures of this PC are measured experimentally with continuous acoustic waves incident on it using the Schlieren method,and the results are highly consistent with the theoretical calculations.The dynamic acoustic field in the PC at different frequencies is imaged and the resonance phenomena in the components of the PC are observed.The results show that the Schlieren method is an effective means of studying the interactions between acoustic waves and PCs.展开更多
This paper is focused on the Marangoni effect in the gas-liquid mass transfer systems. A series of experiments were conducted to observe Marangoni effect by a laser Schlieren system. Experimental investigations of the...This paper is focused on the Marangoni effect in the gas-liquid mass transfer systems. A series of experiments were conducted to observe Marangoni effect by a laser Schlieren system. Experimental investigations of the occurrence of Marangoni convection were presented. The typical polygonal patterns and even the reaching of chaotic interfacial flow were observed. The visual evidences were discussed and the characteristic time and scale of Marangoni convection were obtained approximately as 0. 5 s and 1 mm according to the Schlieren images. From the perspective of hydrodynamic instability, the mechanism of the Marangoni convection was investigated. Though many external factors have influence on the interfacial instability, the local surface-tension gradient is the primary reason for the Marangoni convection. The small-scale interfacial flow increases the surface renewal rate. Consequently. due to the occurrence of the Marangoni effect, the mass transfer rate can be significantly enhanced.展开更多
This report deals with introducing two new techniques based on a novel concept of complex brightness gradient in quantitative schlieren images, “inverse process” and “multi-path integration” for image-noise reduct...This report deals with introducing two new techniques based on a novel concept of complex brightness gradient in quantitative schlieren images, “inverse process” and “multi-path integration” for image-noise reduction. Noise in schlieren images affects the projections (density thickness) images of computerized tomography (CT). One spot noise in the schlieren image appears in a line shape in the density thickness image. Noise effect like an infectious disease spreads from a noisy pixel to the next pixel in the direction of single-path integration. On the one hand, the noise in the schlieren image reduces the quality of the image and quantitative analysis and is undesirable;on the other it is unavoidable. Therefore, the importance of proper noise reduction techniques seems essential and tangible. In the present report, a novel technique “multi-path integration” is proposed for noise reduction in projections images of CT. Multi-path integration is required the schlieren brightness gradient in two orthogonal directions. The 20-directional quantitative schlieren optical system presents only images of schlieren brightness in the horizontal gradient and another 20-directional optical system seems necessary to obtain vertical schlieren brightness gradient, simultaneously. Using the “inverse process”, a new technique enables us to obtain vertical schlieren brightness gradient from horizontal experimental data without the necessity of a new optical system and can be used for obtaining any optional directions of schlieren brightness gradient.展开更多
A 3D temperature field reconstruction method using the colored background oriented schlieren(CBOS)method is proposed to address image blurring due to the different refractive index of the multi-wavelength light and si...A 3D temperature field reconstruction method using the colored background oriented schlieren(CBOS)method is proposed to address image blurring due to the different refractive index of the multi-wavelength light and significant errors produced when the traditional background oriented schlieren(BOS)method is applied to high-temperature gas.First,the traditional method is employed to reconstruct the non-uniform 3D temperature field.Second,the CBOS method is applied to correct the distortion.Then,by analyzing the correlation coefficient among different color points of the colored background pattern,the non-uniform temperature field is reconstructed much more accurately.Finally,the experimental results are verified by applying the Runge-Kutta ray-tracing method and the thermocouple contact measurement method.The maximum average temperature error of the CBOS-reconstructed temperature field is 12.92°C,compared with the thermocouples.Therefore,an accurate three-dimensional reconstruction of the temperature field can be achieved by the proposed method effectively.展开更多
A schlieren texture with six dark brushes emanating from a point and a closed inversion wall have been observed under polarizing optical microscope in nematic state of a thermotropic aromatic copolyester, which have n...A schlieren texture with six dark brushes emanating from a point and a closed inversion wall have been observed under polarizing optical microscope in nematic state of a thermotropic aromatic copolyester, which have not been reported so far in the field of liquid crystalline polymers (LCPs).展开更多
Pulsed laser produced plasmas(LPP)are important for industrial applications and fundamental researches,and their complex,multi-physical and cross-chemical processes need to be investigated more comprehensively.In this...Pulsed laser produced plasmas(LPP)are important for industrial applications and fundamental researches,and their complex,multi-physical and cross-chemical processes need to be investigated more comprehensively.In this work,images of the luminous plasma,the spatial density distribution,and the plasma parameters are experimentally investigated by using fast ICCD photography,schlieren photography,and optical emission spectroscopy.Plasmas are produced by a 1 064 nm,15 ns Nd:YAG laser.Free expanding and splitting phenomena are observed in vacuum(at the pressure of about 1×10 3Pa)and air(at the pressure of 20 Pa)using fast photography,respectively.Meanwhile,shock waves formed in the atmospheric laser produced plasma are visualized by schlieren photography.The formation of shock waves is interpreted with the Sedov-Taylor theory,and an averaged expansion velocity about 375 m/s of the shock waves is estimated during 200~1 000 ns.Atmospheric air is found to have significant confinement effects on the plasma expansions compared to that in vacuum or low pressure ambient.Based on the optical emission spectroscopy,after 1 000 ns,at 0.6 mm above the target,the plasma temperature is about 7 800 K and the electron number density is approximately 0.64×1016cm-3.展开更多
Utilizing high-speed schlieren photography and particle-tracking-velocimetry,the wake flow of tethered houseflies is investigated.The high-speed schlieren photography is implemented on tethered houseflies inside an ai...Utilizing high-speed schlieren photography and particle-tracking-velocimetry,the wake flow of tethered houseflies is investigated.The high-speed schlieren photography is implemented on tethered houseflies inside an air container with a stable vertical temperature gradient to visualize the disturbed wake flow from the insects.The resulting photography images were then processed with the physics based optical flow method to derive the light-path averaged flow velocity.Additionally,the state of the art:Shake-the-Box system is implemented on a tethered housefly to measure the volumetric flow field in the wake of the insect,revealing interesting flow behavior and structures that can also be observed and correlated to the schlieren photography images.Comparing the dimensionless velocity magnitude of the wake flow from the two experiments,a good qualitative agreement is reached,suggesting the viability of high-speed schlieren photography in investigating the wake flow of small insects.Furthermore,the high-speed schlieren photography is successfully applied on a housefly that is taking off from the ground,visualizing the disturbed wake flow on the freely flying insect that is challenging to visualize with other methods.展开更多
In this paper,shock train motion in a Mach number 2.7 duct is studied experimentally,and large numbers of schlieren images are obtained by a high-speed camera.An image processing method based on Maximum Correlation De...In this paper,shock train motion in a Mach number 2.7 duct is studied experimentally,and large numbers of schlieren images are obtained by a high-speed camera.An image processing method based on Maximum Correlation Detection(MCD)is proposed to detect shock train motion from the schlieren images,based on which the key structures,e.g.,separation positions and separation shock angles on the top and bottom walls,can be analysed in detail.The oscillations of the shock train are generated by rhombus and ellipse shafts at various excitation frequencies.According to the analysis of MCD results,the distributions of the frequency components of shock train oscillation generated by the two shafts are distinctly different,in which the motion generated by the ellipse shaft is much smoother;shock train motion is mainly characterized by the oscillation of separation position while the separation shock strength is not so sensitive to downstream disturbance;there is a hysteresis loop relation between the downstream pressure and separation position.展开更多
文摘In this paper, the improved Background Oriented Schlieren technique called CBOS (Colored Background Oriented Schlieren) is described and used to reconstruct the density fields of three-dimensional flows. The Background Oriented Schlieren technique (BOS) allows the measurement of the light deflection caused by density gradients in a compressible flow. For this purpose the distortion of the image of a background pattern observed through the flow is used. In order to increase the performance of the conventional Background Oriented Schlieren technique, the monochromatic background is replaced by a colored dot pattern. The different colors are treated separately using suitable correlation algorithms. Therefore, the precision and the spatial resolution can be highly increased. Furthermore a special arrangement of the different colored dot patterns in the background allows astigmatism in the region with high density gradients to be overcome. For the first time an algebraic reconstruction technique (ART) is then used to reconstruct the density field of unsteady flows around a spike-tipped model from CBOS measurements. The obtained images reveal the interaction between the free-stream flow and the high-pressure region in front of the model, which leads to large-scale instabilities in the flow.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.NSFC 91441205)
文摘An experimental system based on the background-oriented schlieren(BOS) technique is built to reconstruct the density and temperature distribution of a flame-induced distorted flow field which has a density gradient. The cross-correlation algorithm with sub-pixel accuracy is introduced and used to calculate the background-element displacement of a disturbed image and a fourth-order difference scheme is also developed to solve the Poisson equation. An experiment for a disturbed flow field caused by a burning candle is performed to validate the built BOS system and the results indicate that density and temperature distribution of the disturbed flow field can be reconstructed accurately. A notable conclusion is that in order to make the reconstructed results have a satisfactory accuracy, the inquiry step length should be less than the size of the interrogation window.
文摘The schlieren interferograms used to be analyzed in a qualitative way. In this paper, by means of the powerful computational ability and the large memory of computer; the image processing method is investigated for the digitalization of an axisymmetric schlieren interferogram and the determination of the density field. This method includes the 2-D low-pass filtering, the thinning of interferometric fringes, the extraction of physical information and the numerical integration of the density field. The image processing results show that the accuracy of the quantitative analysis of the schlieren interferogram can be improved and a lot of time can be saved in dealing with optical experimental results. Therefore, the algorithm used here is useful and efficient.
文摘To optimize the leek peeling performance, a new nozzle has been developed in which the nozzle has a design Mach number of 1.68, an inner diameter of 2.0 mm at the throat, and an inner diameter of 2.3 mm at the exit. Experiments have been conducted over a range of nozzle pressure ratios from 3.0 to 6.0. Flow field issued from the new nozzle is quantitatively visualized by the rainbow schlieren deflectometry and compared with that from a conventional nozzle. Density fields in the free jets are reconstructed by the Abel inversion method for the schlieren images with the horizontal rainbow filter. The density values at the exit of the conventional nozzle obtained by the rainbow schlieren are compared with the analytical results by the flow model proposed in the past. In addition, Pitot probe surveys along the jet centerline were made to obtain the impact pressure distributions. The Mach number and velocity distributions along the jet centerline are obtained from a combination of the density and Pitot pressure data to clarify the fundamental flow structure of leek peeler nozzle jets.
文摘The jet from a round Laval nozzle followed by a cylindrical duct with an inner diameter of 10 mm and a length of 50 mm is investigated experimentally. The Laval nozzle has a design Mach number of 1.5. Quantitative flow visualization of the jet issued from the duct exit is performed over a range of nozzle pressure ratios from 2.0 to 4.5 using the rainbow schlieren deflectometry combined with the computed tomography to investigate the jet three-dimensional structure. The flow features of the near-field shock systems in the jets are displayed with the density contour plot at the cross-section including the jet centerline. Effects of the nozzle pressure ratio on the density profile along the jet centerline are clarified quantitatively. In addition, a comparison between the present experiment and the previous one with a conventional Laval nozzle for jet centerline density profiles is carried out to examine the effect of the cylindrical duct. Furthermore, the three-dimensional structures of overexpanded and underexpanded jets are demonstrated with the isopycnic surfaces to visualize the internal flow features.
文摘Instantaneous three-dimensional (3D) density distributions of a shock-cell structure of perfectly and imperfectly expanded supersonic microjets escaping into an ambient space are measured. For the 3D observation of supersonic microjets, non-scanning 3D computerized tomography (CT) technique using a 20-directional quantitative schlieren optical system with flashlight source is employed for simultaneous schlieren photography. The 3D density distributions data of the microjets are obtained by 3D-CT reconstruction of the projection’s images using maximum likelihood-expectation maximization. Axisymmetric convergent-divergent (Laval) circular and square micro nozzles with operating nozzle pressure ratio 5.0, 4.5, 4.0, 3.67, and 3.5 have been studied. This study examines perfectly expanded, overexpanded, and underexpanded supersonic microjets issued from micro nozzles with fully expanded jet Mach numbers <em>M</em><em><sub>j</sub></em> ranging from 1.47 - 1.71, where the design Mach number is <em>M<sub>d</sub></em> = 1.5. A complex phenomenon for free square microjets called axis switching is clearly observed with two types “upright” and “diagonal” of “cross-shaped”. The initial axis-switching is 45<span style="white-space:nowrap;">°</span> within the first shock-cell range. In addition, from the symmetry and diagonal views of square microjets for the first shock-cells, two different patterns of shock waves are viewed. The shock-cell spacing and supersonic core length for all nozzle pressure ratios are investigated and reported.
文摘A schlieren detection algorithm is proposed for the ground-to-air background oriented schlieren(BOS) system to achieve high-speed airplane shock waves visualization. The proposed method consists of three steps. Firstly, image registration is incorporated for reducing errors caused by the camera motion.Then, the background subtraction dual-model single Gaussian model(BS-DSGM) is proposed to build a precise background model. The BS-DSGM could prevent the background model from being contaminated by the shock waves. Finally, the twodimensional orthogonal discrete wavelet transformation is used to extract schlieren information and averaging schlieren data. Experimental results show our proposed algorithm is able to detect the aircraft in-flight and to extract the schlieren information. The precision of schlieren detection algorithm is 0.96. Three image quality evaluation indices are chosen for quantitative analysis of the shock waves visualization. The white Gaussian noise is added in the frames to validate the robustness of the proposed algorithm.Moreover, we adopt two times and four times down sampling to simulate different imaging distances for revealing how the imaging distance affects the schlieren information in the BOS system.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10974145,10804050 and 10834009.
文摘The acoustic propagation characteristics of a finite one-dimensional water-glass phononic crystal(PC)are studied using the Schlieren visualization method,which is fast and non-invasive.The band structures of this PC are measured experimentally with continuous acoustic waves incident on it using the Schlieren method,and the results are highly consistent with the theoretical calculations.The dynamic acoustic field in the PC at different frequencies is imaged and the resonance phenomena in the components of the PC are observed.The results show that the Schlieren method is an effective means of studying the interactions between acoustic waves and PCs.
基金Supported by National Natural Science Foundation of China(No. 20136010).
文摘This paper is focused on the Marangoni effect in the gas-liquid mass transfer systems. A series of experiments were conducted to observe Marangoni effect by a laser Schlieren system. Experimental investigations of the occurrence of Marangoni convection were presented. The typical polygonal patterns and even the reaching of chaotic interfacial flow were observed. The visual evidences were discussed and the characteristic time and scale of Marangoni convection were obtained approximately as 0. 5 s and 1 mm according to the Schlieren images. From the perspective of hydrodynamic instability, the mechanism of the Marangoni convection was investigated. Though many external factors have influence on the interfacial instability, the local surface-tension gradient is the primary reason for the Marangoni convection. The small-scale interfacial flow increases the surface renewal rate. Consequently. due to the occurrence of the Marangoni effect, the mass transfer rate can be significantly enhanced.
文摘This report deals with introducing two new techniques based on a novel concept of complex brightness gradient in quantitative schlieren images, “inverse process” and “multi-path integration” for image-noise reduction. Noise in schlieren images affects the projections (density thickness) images of computerized tomography (CT). One spot noise in the schlieren image appears in a line shape in the density thickness image. Noise effect like an infectious disease spreads from a noisy pixel to the next pixel in the direction of single-path integration. On the one hand, the noise in the schlieren image reduces the quality of the image and quantitative analysis and is undesirable;on the other it is unavoidable. Therefore, the importance of proper noise reduction techniques seems essential and tangible. In the present report, a novel technique “multi-path integration” is proposed for noise reduction in projections images of CT. Multi-path integration is required the schlieren brightness gradient in two orthogonal directions. The 20-directional quantitative schlieren optical system presents only images of schlieren brightness in the horizontal gradient and another 20-directional optical system seems necessary to obtain vertical schlieren brightness gradient, simultaneously. Using the “inverse process”, a new technique enables us to obtain vertical schlieren brightness gradient from horizontal experimental data without the necessity of a new optical system and can be used for obtaining any optional directions of schlieren brightness gradient.
基金Supported by the National Natural Science Foundation of China(52005500)Foundation of Tianjin Educational Committee(2018KJ242)Basic Science-Research Funds of National University(3122019088)。
文摘A 3D temperature field reconstruction method using the colored background oriented schlieren(CBOS)method is proposed to address image blurring due to the different refractive index of the multi-wavelength light and significant errors produced when the traditional background oriented schlieren(BOS)method is applied to high-temperature gas.First,the traditional method is employed to reconstruct the non-uniform 3D temperature field.Second,the CBOS method is applied to correct the distortion.Then,by analyzing the correlation coefficient among different color points of the colored background pattern,the non-uniform temperature field is reconstructed much more accurately.Finally,the experimental results are verified by applying the Runge-Kutta ray-tracing method and the thermocouple contact measurement method.The maximum average temperature error of the CBOS-reconstructed temperature field is 12.92°C,compared with the thermocouples.Therefore,an accurate three-dimensional reconstruction of the temperature field can be achieved by the proposed method effectively.
文摘A schlieren texture with six dark brushes emanating from a point and a closed inversion wall have been observed under polarizing optical microscope in nematic state of a thermotropic aromatic copolyester, which have not been reported so far in the field of liquid crystalline polymers (LCPs).
基金Project supported by National Natural Science Foundation of China(51237006).
文摘Pulsed laser produced plasmas(LPP)are important for industrial applications and fundamental researches,and their complex,multi-physical and cross-chemical processes need to be investigated more comprehensively.In this work,images of the luminous plasma,the spatial density distribution,and the plasma parameters are experimentally investigated by using fast ICCD photography,schlieren photography,and optical emission spectroscopy.Plasmas are produced by a 1 064 nm,15 ns Nd:YAG laser.Free expanding and splitting phenomena are observed in vacuum(at the pressure of about 1×10 3Pa)and air(at the pressure of 20 Pa)using fast photography,respectively.Meanwhile,shock waves formed in the atmospheric laser produced plasma are visualized by schlieren photography.The formation of shock waves is interpreted with the Sedov-Taylor theory,and an averaged expansion velocity about 375 m/s of the shock waves is estimated during 200~1 000 ns.Atmospheric air is found to have significant confinement effects on the plasma expansions compared to that in vacuum or low pressure ambient.Based on the optical emission spectroscopy,after 1 000 ns,at 0.6 mm above the target,the plasma temperature is about 7 800 K and the electron number density is approximately 0.64×1016cm-3.
基金The Shake-the-Box system used for the particle tracking velocimetry experiment was funded by National Science Foundation(CMMI-1919726)to Y.Liu.
文摘Utilizing high-speed schlieren photography and particle-tracking-velocimetry,the wake flow of tethered houseflies is investigated.The high-speed schlieren photography is implemented on tethered houseflies inside an air container with a stable vertical temperature gradient to visualize the disturbed wake flow from the insects.The resulting photography images were then processed with the physics based optical flow method to derive the light-path averaged flow velocity.Additionally,the state of the art:Shake-the-Box system is implemented on a tethered housefly to measure the volumetric flow field in the wake of the insect,revealing interesting flow behavior and structures that can also be observed and correlated to the schlieren photography images.Comparing the dimensionless velocity magnitude of the wake flow from the two experiments,a good qualitative agreement is reached,suggesting the viability of high-speed schlieren photography in investigating the wake flow of small insects.Furthermore,the high-speed schlieren photography is successfully applied on a housefly that is taking off from the ground,visualizing the disturbed wake flow on the freely flying insect that is challenging to visualize with other methods.
基金supported by the National Numerical Wind Tunnel Project of China,the National Natural Science Foundation of China(Nos.12002163 and 12072157)the Natural Science Foundation of Jiangsu Province,China(No.BK20200408)+1 种基金the China Postdoctoral Science Foundation(No.2022T150321)the Key Laboratory of Hypersonic Aerodynamic Force and Heat Technology,AVIC Aerodynamics Research Institute,China。
文摘In this paper,shock train motion in a Mach number 2.7 duct is studied experimentally,and large numbers of schlieren images are obtained by a high-speed camera.An image processing method based on Maximum Correlation Detection(MCD)is proposed to detect shock train motion from the schlieren images,based on which the key structures,e.g.,separation positions and separation shock angles on the top and bottom walls,can be analysed in detail.The oscillations of the shock train are generated by rhombus and ellipse shafts at various excitation frequencies.According to the analysis of MCD results,the distributions of the frequency components of shock train oscillation generated by the two shafts are distinctly different,in which the motion generated by the ellipse shaft is much smoother;shock train motion is mainly characterized by the oscillation of separation position while the separation shock strength is not so sensitive to downstream disturbance;there is a hysteresis loop relation between the downstream pressure and separation position.