This paper is focused on the Marangoni effect in the gas-liquid mass transfer systems. A series of experiments were conducted to observe Marangoni effect by a laser Schlieren system. Experimental investigations of the...This paper is focused on the Marangoni effect in the gas-liquid mass transfer systems. A series of experiments were conducted to observe Marangoni effect by a laser Schlieren system. Experimental investigations of the occurrence of Marangoni convection were presented. The typical polygonal patterns and even the reaching of chaotic interfacial flow were observed. The visual evidences were discussed and the characteristic time and scale of Marangoni convection were obtained approximately as 0. 5 s and 1 mm according to the Schlieren images. From the perspective of hydrodynamic instability, the mechanism of the Marangoni convection was investigated. Though many external factors have influence on the interfacial instability, the local surface-tension gradient is the primary reason for the Marangoni convection. The small-scale interfacial flow increases the surface renewal rate. Consequently. due to the occurrence of the Marangoni effect, the mass transfer rate can be significantly enhanced.展开更多
A schlieren detection algorithm is proposed for the ground-to-air background oriented schlieren(BOS) system to achieve high-speed airplane shock waves visualization. The proposed method consists of three steps. Firstl...A schlieren detection algorithm is proposed for the ground-to-air background oriented schlieren(BOS) system to achieve high-speed airplane shock waves visualization. The proposed method consists of three steps. Firstly, image registration is incorporated for reducing errors caused by the camera motion.Then, the background subtraction dual-model single Gaussian model(BS-DSGM) is proposed to build a precise background model. The BS-DSGM could prevent the background model from being contaminated by the shock waves. Finally, the twodimensional orthogonal discrete wavelet transformation is used to extract schlieren information and averaging schlieren data. Experimental results show our proposed algorithm is able to detect the aircraft in-flight and to extract the schlieren information. The precision of schlieren detection algorithm is 0.96. Three image quality evaluation indices are chosen for quantitative analysis of the shock waves visualization. The white Gaussian noise is added in the frames to validate the robustness of the proposed algorithm.Moreover, we adopt two times and four times down sampling to simulate different imaging distances for revealing how the imaging distance affects the schlieren information in the BOS system.展开更多
In the present study, aerodynamic characteristics of the double wedge airfoil model were investigated in a transonic flow by using the shock tube as an intermittent wind tunnel. The driver and driven gases of the shoc...In the present study, aerodynamic characteristics of the double wedge airfoil model were investigated in a transonic flow by using the shock tube as an intermittent wind tunnel. The driver and driven gases of the shock tube are dry air. The airfoil model of double wedge has the span of 58 mm, chord length c = 75 mm and its maximum thickness is 7.5 mm. The apex of the double wedge airfoil model is located on the 35% chord length from the leading edge. The range of hot gas Mach numbers are from 0.80 to 0.88, and the Reynolds numbers based on chord length are 3.11× 10^5- 3.49× 10^5, respectively. The flow visualizations were performed by the sharp focusing schlieren method which can visualize the three dimensional flow fields. The results show that the present system can visualize the transonic flowfield clearer than the previous system, and the shock wave profiles of the center of span in the test section are visualized展开更多
An experimental system based on the background-oriented schlieren(BOS) technique is built to reconstruct the density and temperature distribution of a flame-induced distorted flow field which has a density gradient....An experimental system based on the background-oriented schlieren(BOS) technique is built to reconstruct the density and temperature distribution of a flame-induced distorted flow field which has a density gradient. The cross-correlation algorithm with sub-pixel accuracy is introduced and used to calculate the background-element displacement of a disturbed image and a fourth-order difference scheme is also developed to solve the Poisson equation. An experiment for a disturbed flow field caused by a burning candle is performed to validate the built BOS system and the results indicate that density and temperature distribution of the disturbed flow field can be reconstructed accurately. A notable conclusion is that in order to make the reconstructed results have a satisfactory accuracy, the inquiry step length should be less than the size of the interrogation window.展开更多
In this paper, the improved Background Oriented Schlieren technique called CBOS (Colored Background Oriented Schlieren) is described and used to reconstruct the density fields of three-dimensional flows. The Backgroun...In this paper, the improved Background Oriented Schlieren technique called CBOS (Colored Background Oriented Schlieren) is described and used to reconstruct the density fields of three-dimensional flows. The Background Oriented Schlieren technique (BOS) allows the measurement of the light deflection caused by density gradients in a compressible flow. For this purpose the distortion of the image of a background pattern observed through the flow is used. In order to increase the performance of the conventional Background Oriented Schlieren technique, the monochromatic background is replaced by a colored dot pattern. The different colors are treated separately using suitable correlation algorithms. Therefore, the precision and the spatial resolution can be highly increased. Furthermore a special arrangement of the different colored dot patterns in the background allows astigmatism in the region with high density gradients to be overcome. For the first time an algebraic reconstruction technique (ART) is then used to reconstruct the density field of unsteady flows around a spike-tipped model from CBOS measurements. The obtained images reveal the interaction between the free-stream flow and the high-pressure region in front of the model, which leads to large-scale instabilities in the flow.展开更多
The schlieren interferograms used to be analyzed in a qualitative way. In this paper, by means of the powerful computational ability and the large memory of computer; the image processing method is investigated for th...The schlieren interferograms used to be analyzed in a qualitative way. In this paper, by means of the powerful computational ability and the large memory of computer; the image processing method is investigated for the digitalization of an axisymmetric schlieren interferogram and the determination of the density field. This method includes the 2-D low-pass filtering, the thinning of interferometric fringes, the extraction of physical information and the numerical integration of the density field. The image processing results show that the accuracy of the quantitative analysis of the schlieren interferogram can be improved and a lot of time can be saved in dealing with optical experimental results. Therefore, the algorithm used here is useful and efficient.展开更多
To optimize the leek peeling performance, a new nozzle has been developed in which the nozzle has a design Mach number of 1.68, an inner diameter of 2.0 mm at the throat, and an inner diameter of 2.3 mm at the exit. E...To optimize the leek peeling performance, a new nozzle has been developed in which the nozzle has a design Mach number of 1.68, an inner diameter of 2.0 mm at the throat, and an inner diameter of 2.3 mm at the exit. Experiments have been conducted over a range of nozzle pressure ratios from 3.0 to 6.0. Flow field issued from the new nozzle is quantitatively visualized by the rainbow schlieren deflectometry and compared with that from a conventional nozzle. Density fields in the free jets are reconstructed by the Abel inversion method for the schlieren images with the horizontal rainbow filter. The density values at the exit of the conventional nozzle obtained by the rainbow schlieren are compared with the analytical results by the flow model proposed in the past. In addition, Pitot probe surveys along the jet centerline were made to obtain the impact pressure distributions. The Mach number and velocity distributions along the jet centerline are obtained from a combination of the density and Pitot pressure data to clarify the fundamental flow structure of leek peeler nozzle jets.展开更多
Instantaneous three-dimensional (3D) density distributions of a shock-cell structure of perfectly and imperfectly expanded supersonic microjets escaping into an ambient space are measured. For the 3D observation of su...Instantaneous three-dimensional (3D) density distributions of a shock-cell structure of perfectly and imperfectly expanded supersonic microjets escaping into an ambient space are measured. For the 3D observation of supersonic microjets, non-scanning 3D computerized tomography (CT) technique using a 20-directional quantitative schlieren optical system with flashlight source is employed for simultaneous schlieren photography. The 3D density distributions data of the microjets are obtained by 3D-CT reconstruction of the projection’s images using maximum likelihood-expectation maximization. Axisymmetric convergent-divergent (Laval) circular and square micro nozzles with operating nozzle pressure ratio 5.0, 4.5, 4.0, 3.67, and 3.5 have been studied. This study examines perfectly expanded, overexpanded, and underexpanded supersonic microjets issued from micro nozzles with fully expanded jet Mach numbers <em>M</em><em><sub>j</sub></em> ranging from 1.47 - 1.71, where the design Mach number is <em>M<sub>d</sub></em> = 1.5. A complex phenomenon for free square microjets called axis switching is clearly observed with two types “upright” and “diagonal” of “cross-shaped”. The initial axis-switching is 45<span style="white-space:nowrap;">°</span> within the first shock-cell range. In addition, from the symmetry and diagonal views of square microjets for the first shock-cells, two different patterns of shock waves are viewed. The shock-cell spacing and supersonic core length for all nozzle pressure ratios are investigated and reported.展开更多
The jet from a round Laval nozzle followed by a cylindrical duct with an inner diameter of 10 mm and a length of 50 mm is investigated experimentally. The Laval nozzle has a design Mach number of 1.5. Quantitative flo...The jet from a round Laval nozzle followed by a cylindrical duct with an inner diameter of 10 mm and a length of 50 mm is investigated experimentally. The Laval nozzle has a design Mach number of 1.5. Quantitative flow visualization of the jet issued from the duct exit is performed over a range of nozzle pressure ratios from 2.0 to 4.5 using the rainbow schlieren deflectometry combined with the computed tomography to investigate the jet three-dimensional structure. The flow features of the near-field shock systems in the jets are displayed with the density contour plot at the cross-section including the jet centerline. Effects of the nozzle pressure ratio on the density profile along the jet centerline are clarified quantitatively. In addition, a comparison between the present experiment and the previous one with a conventional Laval nozzle for jet centerline density profiles is carried out to examine the effect of the cylindrical duct. Furthermore, the three-dimensional structures of overexpanded and underexpanded jets are demonstrated with the isopycnic surfaces to visualize the internal flow features.展开更多
The acoustic propagation characteristics of a finite one-dimensional water-glass phononic crystal(PC)are studied using the Schlieren visualization method,which is fast and non-invasive.The band structures of this PC a...The acoustic propagation characteristics of a finite one-dimensional water-glass phononic crystal(PC)are studied using the Schlieren visualization method,which is fast and non-invasive.The band structures of this PC are measured experimentally with continuous acoustic waves incident on it using the Schlieren method,and the results are highly consistent with the theoretical calculations.The dynamic acoustic field in the PC at different frequencies is imaged and the resonance phenomena in the components of the PC are observed.The results show that the Schlieren method is an effective means of studying the interactions between acoustic waves and PCs.展开更多
By using a hybrid lattice-Boltzmann–finite-difference method(hybrid LBM–FDM method),three-dimensional simulations of solutal interfacial convection were conducted for the process of CO2absorption into ethanol.A self...By using a hybrid lattice-Boltzmann–finite-difference method(hybrid LBM–FDM method),three-dimensional simulations of solutal interfacial convection were conducted for the process of CO2absorption into ethanol.A self-renewal interface model is adopted as an interfacial perturbation model.The simulation results revealed some three-dimensional features of the induced interfacial convection,such as the development of diverging cellular flow and Rayleigh plume-like convection in liquid phase.The concentration distribution of the simulation result is validated and found to be in well agreement with the Schlieren visualization results qualitatively.Additionally,the mass transfer enhancements by interfacial convection were investigated via both simulation and experiment for the absorption process,and the mass transfer is shown to be enhanced by the interfacial convection by about two-fold comparing with that by diffusion.展开更多
This report deals with introducing two new techniques based on a novel concept of complex brightness gradient in quantitative schlieren images, “inverse process” and “multi-path integration” for image-noise reduct...This report deals with introducing two new techniques based on a novel concept of complex brightness gradient in quantitative schlieren images, “inverse process” and “multi-path integration” for image-noise reduction. Noise in schlieren images affects the projections (density thickness) images of computerized tomography (CT). One spot noise in the schlieren image appears in a line shape in the density thickness image. Noise effect like an infectious disease spreads from a noisy pixel to the next pixel in the direction of single-path integration. On the one hand, the noise in the schlieren image reduces the quality of the image and quantitative analysis and is undesirable;on the other it is unavoidable. Therefore, the importance of proper noise reduction techniques seems essential and tangible. In the present report, a novel technique “multi-path integration” is proposed for noise reduction in projections images of CT. Multi-path integration is required the schlieren brightness gradient in two orthogonal directions. The 20-directional quantitative schlieren optical system presents only images of schlieren brightness in the horizontal gradient and another 20-directional optical system seems necessary to obtain vertical schlieren brightness gradient, simultaneously. Using the “inverse process”, a new technique enables us to obtain vertical schlieren brightness gradient from horizontal experimental data without the necessity of a new optical system and can be used for obtaining any optional directions of schlieren brightness gradient.展开更多
A 3D temperature field reconstruction method using the colored background oriented schlieren(CBOS)method is proposed to address image blurring due to the different refractive index of the multi-wavelength light and si...A 3D temperature field reconstruction method using the colored background oriented schlieren(CBOS)method is proposed to address image blurring due to the different refractive index of the multi-wavelength light and significant errors produced when the traditional background oriented schlieren(BOS)method is applied to high-temperature gas.First,the traditional method is employed to reconstruct the non-uniform 3D temperature field.Second,the CBOS method is applied to correct the distortion.Then,by analyzing the correlation coefficient among different color points of the colored background pattern,the non-uniform temperature field is reconstructed much more accurately.Finally,the experimental results are verified by applying the Runge-Kutta ray-tracing method and the thermocouple contact measurement method.The maximum average temperature error of the CBOS-reconstructed temperature field is 12.92°C,compared with the thermocouples.Therefore,an accurate three-dimensional reconstruction of the temperature field can be achieved by the proposed method effectively.展开更多
A schlieren texture with six dark brushes emanating from a point and a closed inversion wall have been observed under polarizing optical microscope in nematic state of a thermotropic aromatic copolyester, which have n...A schlieren texture with six dark brushes emanating from a point and a closed inversion wall have been observed under polarizing optical microscope in nematic state of a thermotropic aromatic copolyester, which have not been reported so far in the field of liquid crystalline polymers (LCPs).展开更多
Aiming at the change in intake air flow caused by the injection of natural gas in intake manifold if one simply replaces the gasoline injector with natural gas injector with the installing position of injector in inta...Aiming at the change in intake air flow caused by the injection of natural gas in intake manifold if one simply replaces the gasoline injector with natural gas injector with the installing position of injector in intake manifold unchanged, and also the reflection of gas toward intake manifold inlet resulted from the impingement between the injected large volumetric natural gas jet and intake valve, an impulsively started natural gas jet injected from a gas injector is characterized as a three-dimensional unsteady compressible viscous turbulent flow, based on which its transient development process is numerically analyzed using general-purpose CFD codes. The predicted velocity vector maps show a vortex, which indicates the occurrence of an unsteady state jet region, is formed downstream of the jet. A schlieren apparatus is utilized to get several groups of visible schlieren photographs of natural gas jets. In the experiment, photographs of natural gas jets taken by a CCD camera are laid in a portrait processor where the shapes, tip penetration distance and injection angles of the gas jets are investigated. Comparisons between predicted results and measurements indicate an excellent agreement between simulations and experimental results.展开更多
In blasting engineering, the location and number of detonation points, to a certain degree, regulate the propagation direction ofthe explosion stress wave and blasting effect. Herein, we examine the explosion wave fie...In blasting engineering, the location and number of detonation points, to a certain degree, regulate the propagation direction ofthe explosion stress wave and blasting effect. Herein, we examine the explosion wave field and rock breaking effect in terms of shockwave collision, stress change of the blast hole wall in the collision zone, and crack propagation in the collision zone. The produced shockwave on the collision surface has an intensity surpassing the sum of the intensities of the two colliding explosion shock waves. At the collisionlocation, the kinetic energy is transformed into potential energy with a reduction in particle velocity at the wave front and the wavefront pressure increases. The expansion form of the superposed shock wave is dumbbell-shaped, the shock wave velocity in the collisionarea is greater than the radial shock wave velocity, and the average propagation angle of the explosion shock waves is approximately 60°.Accordingly, a fitted relationship between blast hole wall stress and explosion wave propagation angle in the superposition area is plotted.Under the experimental conditions, the superimposed explosion wave stress of the blast hole wall is approximately 1.73 times the singleexplosionwave incident stress. The results of the model test and numerical simulations reveal that large-scale radial fracture cracks weregenerated on the blast hole wall in the superimposed area, and the width of the crack increased. The width of the large-scale radial fracturecracks formed by a strong impact is approximately 5% of the blast hole length. According to the characteristics of blast hole wallcompression, the mean peak pressures of the strongly superimposed area are approximately 1.48 and 1.84 times those of the weakly superimposedand nonsuperimposed areas, respectively.展开更多
基金Supported by National Natural Science Foundation of China(No. 20136010).
文摘This paper is focused on the Marangoni effect in the gas-liquid mass transfer systems. A series of experiments were conducted to observe Marangoni effect by a laser Schlieren system. Experimental investigations of the occurrence of Marangoni convection were presented. The typical polygonal patterns and even the reaching of chaotic interfacial flow were observed. The visual evidences were discussed and the characteristic time and scale of Marangoni convection were obtained approximately as 0. 5 s and 1 mm according to the Schlieren images. From the perspective of hydrodynamic instability, the mechanism of the Marangoni convection was investigated. Though many external factors have influence on the interfacial instability, the local surface-tension gradient is the primary reason for the Marangoni convection. The small-scale interfacial flow increases the surface renewal rate. Consequently. due to the occurrence of the Marangoni effect, the mass transfer rate can be significantly enhanced.
文摘A schlieren detection algorithm is proposed for the ground-to-air background oriented schlieren(BOS) system to achieve high-speed airplane shock waves visualization. The proposed method consists of three steps. Firstly, image registration is incorporated for reducing errors caused by the camera motion.Then, the background subtraction dual-model single Gaussian model(BS-DSGM) is proposed to build a precise background model. The BS-DSGM could prevent the background model from being contaminated by the shock waves. Finally, the twodimensional orthogonal discrete wavelet transformation is used to extract schlieren information and averaging schlieren data. Experimental results show our proposed algorithm is able to detect the aircraft in-flight and to extract the schlieren information. The precision of schlieren detection algorithm is 0.96. Three image quality evaluation indices are chosen for quantitative analysis of the shock waves visualization. The white Gaussian noise is added in the frames to validate the robustness of the proposed algorithm.Moreover, we adopt two times and four times down sampling to simulate different imaging distances for revealing how the imaging distance affects the schlieren information in the BOS system.
文摘In the present study, aerodynamic characteristics of the double wedge airfoil model were investigated in a transonic flow by using the shock tube as an intermittent wind tunnel. The driver and driven gases of the shock tube are dry air. The airfoil model of double wedge has the span of 58 mm, chord length c = 75 mm and its maximum thickness is 7.5 mm. The apex of the double wedge airfoil model is located on the 35% chord length from the leading edge. The range of hot gas Mach numbers are from 0.80 to 0.88, and the Reynolds numbers based on chord length are 3.11× 10^5- 3.49× 10^5, respectively. The flow visualizations were performed by the sharp focusing schlieren method which can visualize the three dimensional flow fields. The results show that the present system can visualize the transonic flowfield clearer than the previous system, and the shock wave profiles of the center of span in the test section are visualized
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.NSFC 91441205)
文摘An experimental system based on the background-oriented schlieren(BOS) technique is built to reconstruct the density and temperature distribution of a flame-induced distorted flow field which has a density gradient. The cross-correlation algorithm with sub-pixel accuracy is introduced and used to calculate the background-element displacement of a disturbed image and a fourth-order difference scheme is also developed to solve the Poisson equation. An experiment for a disturbed flow field caused by a burning candle is performed to validate the built BOS system and the results indicate that density and temperature distribution of the disturbed flow field can be reconstructed accurately. A notable conclusion is that in order to make the reconstructed results have a satisfactory accuracy, the inquiry step length should be less than the size of the interrogation window.
文摘In this paper, the improved Background Oriented Schlieren technique called CBOS (Colored Background Oriented Schlieren) is described and used to reconstruct the density fields of three-dimensional flows. The Background Oriented Schlieren technique (BOS) allows the measurement of the light deflection caused by density gradients in a compressible flow. For this purpose the distortion of the image of a background pattern observed through the flow is used. In order to increase the performance of the conventional Background Oriented Schlieren technique, the monochromatic background is replaced by a colored dot pattern. The different colors are treated separately using suitable correlation algorithms. Therefore, the precision and the spatial resolution can be highly increased. Furthermore a special arrangement of the different colored dot patterns in the background allows astigmatism in the region with high density gradients to be overcome. For the first time an algebraic reconstruction technique (ART) is then used to reconstruct the density field of unsteady flows around a spike-tipped model from CBOS measurements. The obtained images reveal the interaction between the free-stream flow and the high-pressure region in front of the model, which leads to large-scale instabilities in the flow.
文摘The schlieren interferograms used to be analyzed in a qualitative way. In this paper, by means of the powerful computational ability and the large memory of computer; the image processing method is investigated for the digitalization of an axisymmetric schlieren interferogram and the determination of the density field. This method includes the 2-D low-pass filtering, the thinning of interferometric fringes, the extraction of physical information and the numerical integration of the density field. The image processing results show that the accuracy of the quantitative analysis of the schlieren interferogram can be improved and a lot of time can be saved in dealing with optical experimental results. Therefore, the algorithm used here is useful and efficient.
文摘To optimize the leek peeling performance, a new nozzle has been developed in which the nozzle has a design Mach number of 1.68, an inner diameter of 2.0 mm at the throat, and an inner diameter of 2.3 mm at the exit. Experiments have been conducted over a range of nozzle pressure ratios from 3.0 to 6.0. Flow field issued from the new nozzle is quantitatively visualized by the rainbow schlieren deflectometry and compared with that from a conventional nozzle. Density fields in the free jets are reconstructed by the Abel inversion method for the schlieren images with the horizontal rainbow filter. The density values at the exit of the conventional nozzle obtained by the rainbow schlieren are compared with the analytical results by the flow model proposed in the past. In addition, Pitot probe surveys along the jet centerline were made to obtain the impact pressure distributions. The Mach number and velocity distributions along the jet centerline are obtained from a combination of the density and Pitot pressure data to clarify the fundamental flow structure of leek peeler nozzle jets.
文摘Instantaneous three-dimensional (3D) density distributions of a shock-cell structure of perfectly and imperfectly expanded supersonic microjets escaping into an ambient space are measured. For the 3D observation of supersonic microjets, non-scanning 3D computerized tomography (CT) technique using a 20-directional quantitative schlieren optical system with flashlight source is employed for simultaneous schlieren photography. The 3D density distributions data of the microjets are obtained by 3D-CT reconstruction of the projection’s images using maximum likelihood-expectation maximization. Axisymmetric convergent-divergent (Laval) circular and square micro nozzles with operating nozzle pressure ratio 5.0, 4.5, 4.0, 3.67, and 3.5 have been studied. This study examines perfectly expanded, overexpanded, and underexpanded supersonic microjets issued from micro nozzles with fully expanded jet Mach numbers <em>M</em><em><sub>j</sub></em> ranging from 1.47 - 1.71, where the design Mach number is <em>M<sub>d</sub></em> = 1.5. A complex phenomenon for free square microjets called axis switching is clearly observed with two types “upright” and “diagonal” of “cross-shaped”. The initial axis-switching is 45<span style="white-space:nowrap;">°</span> within the first shock-cell range. In addition, from the symmetry and diagonal views of square microjets for the first shock-cells, two different patterns of shock waves are viewed. The shock-cell spacing and supersonic core length for all nozzle pressure ratios are investigated and reported.
文摘The jet from a round Laval nozzle followed by a cylindrical duct with an inner diameter of 10 mm and a length of 50 mm is investigated experimentally. The Laval nozzle has a design Mach number of 1.5. Quantitative flow visualization of the jet issued from the duct exit is performed over a range of nozzle pressure ratios from 2.0 to 4.5 using the rainbow schlieren deflectometry combined with the computed tomography to investigate the jet three-dimensional structure. The flow features of the near-field shock systems in the jets are displayed with the density contour plot at the cross-section including the jet centerline. Effects of the nozzle pressure ratio on the density profile along the jet centerline are clarified quantitatively. In addition, a comparison between the present experiment and the previous one with a conventional Laval nozzle for jet centerline density profiles is carried out to examine the effect of the cylindrical duct. Furthermore, the three-dimensional structures of overexpanded and underexpanded jets are demonstrated with the isopycnic surfaces to visualize the internal flow features.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10974145,10804050 and 10834009.
文摘The acoustic propagation characteristics of a finite one-dimensional water-glass phononic crystal(PC)are studied using the Schlieren visualization method,which is fast and non-invasive.The band structures of this PC are measured experimentally with continuous acoustic waves incident on it using the Schlieren method,and the results are highly consistent with the theoretical calculations.The dynamic acoustic field in the PC at different frequencies is imaged and the resonance phenomena in the components of the PC are observed.The results show that the Schlieren method is an effective means of studying the interactions between acoustic waves and PCs.
基金Supported by the National Natural Science Foundation of China(20736005)
文摘By using a hybrid lattice-Boltzmann–finite-difference method(hybrid LBM–FDM method),three-dimensional simulations of solutal interfacial convection were conducted for the process of CO2absorption into ethanol.A self-renewal interface model is adopted as an interfacial perturbation model.The simulation results revealed some three-dimensional features of the induced interfacial convection,such as the development of diverging cellular flow and Rayleigh plume-like convection in liquid phase.The concentration distribution of the simulation result is validated and found to be in well agreement with the Schlieren visualization results qualitatively.Additionally,the mass transfer enhancements by interfacial convection were investigated via both simulation and experiment for the absorption process,and the mass transfer is shown to be enhanced by the interfacial convection by about two-fold comparing with that by diffusion.
文摘This report deals with introducing two new techniques based on a novel concept of complex brightness gradient in quantitative schlieren images, “inverse process” and “multi-path integration” for image-noise reduction. Noise in schlieren images affects the projections (density thickness) images of computerized tomography (CT). One spot noise in the schlieren image appears in a line shape in the density thickness image. Noise effect like an infectious disease spreads from a noisy pixel to the next pixel in the direction of single-path integration. On the one hand, the noise in the schlieren image reduces the quality of the image and quantitative analysis and is undesirable;on the other it is unavoidable. Therefore, the importance of proper noise reduction techniques seems essential and tangible. In the present report, a novel technique “multi-path integration” is proposed for noise reduction in projections images of CT. Multi-path integration is required the schlieren brightness gradient in two orthogonal directions. The 20-directional quantitative schlieren optical system presents only images of schlieren brightness in the horizontal gradient and another 20-directional optical system seems necessary to obtain vertical schlieren brightness gradient, simultaneously. Using the “inverse process”, a new technique enables us to obtain vertical schlieren brightness gradient from horizontal experimental data without the necessity of a new optical system and can be used for obtaining any optional directions of schlieren brightness gradient.
基金Supported by the National Natural Science Foundation of China(52005500)Foundation of Tianjin Educational Committee(2018KJ242)Basic Science-Research Funds of National University(3122019088)。
文摘A 3D temperature field reconstruction method using the colored background oriented schlieren(CBOS)method is proposed to address image blurring due to the different refractive index of the multi-wavelength light and significant errors produced when the traditional background oriented schlieren(BOS)method is applied to high-temperature gas.First,the traditional method is employed to reconstruct the non-uniform 3D temperature field.Second,the CBOS method is applied to correct the distortion.Then,by analyzing the correlation coefficient among different color points of the colored background pattern,the non-uniform temperature field is reconstructed much more accurately.Finally,the experimental results are verified by applying the Runge-Kutta ray-tracing method and the thermocouple contact measurement method.The maximum average temperature error of the CBOS-reconstructed temperature field is 12.92°C,compared with the thermocouples.Therefore,an accurate three-dimensional reconstruction of the temperature field can be achieved by the proposed method effectively.
文摘A schlieren texture with six dark brushes emanating from a point and a closed inversion wall have been observed under polarizing optical microscope in nematic state of a thermotropic aromatic copolyester, which have not been reported so far in the field of liquid crystalline polymers (LCPs).
基金This project is supported by Provincial Natural Science Foundation of Shandong (No.Y2000F07)Scientific Research Foundation for Returned Overseas Chinese Scholars, Education Ministry of China.
文摘Aiming at the change in intake air flow caused by the injection of natural gas in intake manifold if one simply replaces the gasoline injector with natural gas injector with the installing position of injector in intake manifold unchanged, and also the reflection of gas toward intake manifold inlet resulted from the impingement between the injected large volumetric natural gas jet and intake valve, an impulsively started natural gas jet injected from a gas injector is characterized as a three-dimensional unsteady compressible viscous turbulent flow, based on which its transient development process is numerically analyzed using general-purpose CFD codes. The predicted velocity vector maps show a vortex, which indicates the occurrence of an unsteady state jet region, is formed downstream of the jet. A schlieren apparatus is utilized to get several groups of visible schlieren photographs of natural gas jets. In the experiment, photographs of natural gas jets taken by a CCD camera are laid in a portrait processor where the shapes, tip penetration distance and injection angles of the gas jets are investigated. Comparisons between predicted results and measurements indicate an excellent agreement between simulations and experimental results.
基金This research was financially supported by the National Natural Science Foundation of China(Nos.52208384 and 51934001)the National Key Research and Development Program of China(No.2021YFB3401501)the State Key Laboratory of Precision Blasting and Hubei Key Laboratory of Blasting Engineering,Jianghan University(No.PBSKL2022C05).
文摘In blasting engineering, the location and number of detonation points, to a certain degree, regulate the propagation direction ofthe explosion stress wave and blasting effect. Herein, we examine the explosion wave field and rock breaking effect in terms of shockwave collision, stress change of the blast hole wall in the collision zone, and crack propagation in the collision zone. The produced shockwave on the collision surface has an intensity surpassing the sum of the intensities of the two colliding explosion shock waves. At the collisionlocation, the kinetic energy is transformed into potential energy with a reduction in particle velocity at the wave front and the wavefront pressure increases. The expansion form of the superposed shock wave is dumbbell-shaped, the shock wave velocity in the collisionarea is greater than the radial shock wave velocity, and the average propagation angle of the explosion shock waves is approximately 60°.Accordingly, a fitted relationship between blast hole wall stress and explosion wave propagation angle in the superposition area is plotted.Under the experimental conditions, the superimposed explosion wave stress of the blast hole wall is approximately 1.73 times the singleexplosionwave incident stress. The results of the model test and numerical simulations reveal that large-scale radial fracture cracks weregenerated on the blast hole wall in the superimposed area, and the width of the crack increased. The width of the large-scale radial fracturecracks formed by a strong impact is approximately 5% of the blast hole length. According to the characteristics of blast hole wallcompression, the mean peak pressures of the strongly superimposed area are approximately 1.48 and 1.84 times those of the weakly superimposedand nonsuperimposed areas, respectively.