The behavior of two collinear anti-plane shear cracks in a piezoelectric layer bonded to two half spaces is investigated by the Schmidt method. The cracks are vertically to the interfaces of the piezoelectric layer. B...The behavior of two collinear anti-plane shear cracks in a piezoelectric layer bonded to two half spaces is investigated by the Schmidt method. The cracks are vertically to the interfaces of the piezoelectric layer. By using the Fourier transform, the problem can be solved with two pairs of triple integral equations. These equations are solved using the Schmidt method. This process is quite different from that adopted previously. Numerical examples are provided to show the effect of the geometry of the interacting cracks and the piezoelectric constants of the material upon the stress intensity factor of the cracks.展开更多
In this paper, the interaction between two collinear cracks inpiezoelectric materials under anti-plane shear loading wasinvestigated for the impermeable crack face conditions. By using theFourier transform, the proble...In this paper, the interaction between two collinear cracks inpiezoelectric materials under anti-plane shear loading wasinvestigated for the impermeable crack face conditions. By using theFourier transform, the problem can be solved with two pairs of tripleintegral equations. These equations are solved using Schmidt'smethod. This process is quite different from that adopted previously.This makes it possible to understand the two collinear cracksinteraction in piezoelectric materials.展开更多
Field equations of the non-local elasticity are solved to determine the state of stress in a plate with a Griffith crack subject to uniform tension. Then a set of dual-integral equations is solved using a new method, ...Field equations of the non-local elasticity are solved to determine the state of stress in a plate with a Griffith crack subject to uniform tension. Then a set of dual-integral equations is solved using a new method, namely Schmidt's method. This method is more exact and more reasonable than Eringen's a one Sor solving this kind of problem. Contrary to the solution of classical elasticity, it is found that no stress singularity is present ar the crack tip. The significance of this result is that the fracture criteria are unified at both the macroscopic and the microscopic scales. The finite hoop stress at the crack tip depends on the crack length.展开更多
This paper proves that the weighting method via modified Gram-Schmidt(MGS) for solving the equality constrained least squares problem in the limit is equivalent to the direct elimination method via MGS(MGS-eliminat...This paper proves that the weighting method via modified Gram-Schmidt(MGS) for solving the equality constrained least squares problem in the limit is equivalent to the direct elimination method via MGS(MGS-elimination method). By virtue of this equivalence, the backward and forward roundoff error analysis of the MGS-elimination method is proved. Numerical experiments are provided to verify the results.展开更多
基金supported by the Post Doctoral Science Foundation of Heilongjiang Province, the Natural Science Foundation of Heilongjiang Province,哈尔滨工业大学校科研和教改项目
文摘The behavior of two collinear anti-plane shear cracks in a piezoelectric layer bonded to two half spaces is investigated by the Schmidt method. The cracks are vertically to the interfaces of the piezoelectric layer. By using the Fourier transform, the problem can be solved with two pairs of triple integral equations. These equations are solved using the Schmidt method. This process is quite different from that adopted previously. Numerical examples are provided to show the effect of the geometry of the interacting cracks and the piezoelectric constants of the material upon the stress intensity factor of the cracks.
基金the Post-Doctoral Science Foundationthe Natural Science Foundation of Heilongjiang Province
文摘In this paper, the interaction between two collinear cracks inpiezoelectric materials under anti-plane shear loading wasinvestigated for the impermeable crack face conditions. By using theFourier transform, the problem can be solved with two pairs of tripleintegral equations. These equations are solved using Schmidt'smethod. This process is quite different from that adopted previously.This makes it possible to understand the two collinear cracksinteraction in piezoelectric materials.
文摘Field equations of the non-local elasticity are solved to determine the state of stress in a plate with a Griffith crack subject to uniform tension. Then a set of dual-integral equations is solved using a new method, namely Schmidt's method. This method is more exact and more reasonable than Eringen's a one Sor solving this kind of problem. Contrary to the solution of classical elasticity, it is found that no stress singularity is present ar the crack tip. The significance of this result is that the fracture criteria are unified at both the macroscopic and the microscopic scales. The finite hoop stress at the crack tip depends on the crack length.
基金supported by the Shanghai Leading Academic Discipline Project (Grant No.J50101)
文摘This paper proves that the weighting method via modified Gram-Schmidt(MGS) for solving the equality constrained least squares problem in the limit is equivalent to the direct elimination method via MGS(MGS-elimination method). By virtue of this equivalence, the backward and forward roundoff error analysis of the MGS-elimination method is proved. Numerical experiments are provided to verify the results.