Small high-quality Au/n type-GaAs Schottky barrier diodes (SBDs) with low reverse leakage current are produced using lithography. Their effective barrier heights (BHs) and ideality factors from current-voltage (...Small high-quality Au/n type-GaAs Schottky barrier diodes (SBDs) with low reverse leakage current are produced using lithography. Their effective barrier heights (BHs) and ideality factors from current-voltage (I-V) characteristics are measured by a Pico ampere meter and home-built I-V instrument. In spite of the identical preparation of the diodes there is a diode-to-diode variation in ideality factor and barrier height parameters. Measurement of topology of a surface of a thin metal film with atomic force microscope (AFM) shows that Au-n type-GaAS SD consists of a set of parallel-connected micro and nanocontacts diodes with sizes approximately in a range of 100-200 nm. Between barrier height and ideality factor there is an inversely proportional dependency. With the diameter of contact increasing from 5 μm up to 200 μm, the barrier height increases from 0.833 up to 0.933 eV and its ideality factor decreases from 1.11 down to 1.006. These dependencies show the reduction of the contribution of the peripheral current with the diameter of contact increasing. We find the effect of series resistance on barrier height and ideality factor.展开更多
This paper investigates the current-voltage (I-V) characteristics of Al/Ti/4H-SiC Schottky barrier diodes (SBDs) in the temperature range of 77 K-500 K, which shows that Al/Ti/4H SiC SBDs have good rectifying beha...This paper investigates the current-voltage (I-V) characteristics of Al/Ti/4H-SiC Schottky barrier diodes (SBDs) in the temperature range of 77 K-500 K, which shows that Al/Ti/4H SiC SBDs have good rectifying behaviour. An abnormal behaviour, in which the zero bias barrier height decreases while the ideality factor increases with decreasing temperature (T), has been successfully interpreted by using thermionic emission theory with Gaussian distribution of the barrier heights due to the inhomogeneous barrier height at the A1/Ti/4H-SiC interface. The effective Richardson constant A* = 154 A/cm2 . K2 is determined by means of a modified Richardson plot In(I0/T2) - (qσ)2/2(κT)2 versus q/kT, which is very close to the theoretical value 146 A/cm2 · K2.展开更多
Modulation of the Schottky barrier heights was successfully demonstrated for WNx/p-Ge and WNx/n-Ge contacts by increasing the nitrogen component in the WNx films. The WN0.38/p-Ge contact exhibits rectifying characteri...Modulation of the Schottky barrier heights was successfully demonstrated for WNx/p-Ge and WNx/n-Ge contacts by increasing the nitrogen component in the WNx films. The WN0.38/p-Ge contact exhibits rectifying characteristic and an apparent Schottky barrier of 0.49 eV while the WN0.38/n-Ge Schottky contact exhibits quasi-Ohmic current–voltage characteristics. Dipoles formed at the contact interface by the difference of the Pauling electronegativities of Ge and N are confirmed to alleviate the Fermi-level pinning effect.展开更多
This paper investigates the thermal activation behaviour of current in an inhomogeneous Schottky diode with a Gaussian distribution of barrier height by numerical simulation. The analytical Gaussian distribution model...This paper investigates the thermal activation behaviour of current in an inhomogeneous Schottky diode with a Gaussian distribution of barrier height by numerical simulation. The analytical Gaussian distribution model predicted that the I-VT curves may intersect with the possibility of the negative thermal activation of current, but may be contradictory to the thermionic emission mechanism in a Schottky diode. It shows that the cause of the unphysical phenomenon is related to the incorrect calculation of current across very low barriers. It proposes that junction voltage Vj, excluding the voltage drop across series resistance from the external bias, is a crucial parameter for correct calculation of the current across very low barriers. For correctly employing the thermionic emission model, Vj needs to be smaller than the barrier height Ф. With proper scheme of series resistance connection where the condition of Vj 〉 Ф is guaranteed, I-V T curves of an inhomogeneous Schottky diode with a Gaussian distribution of barrier height have been simulated, which demonstrate normal thermal activation. Although the calculated results exclude the intersecting possibility of I-V T curves with an assumption of temperature-independent series resistance, it shows that the intersecting is possible when the series resistance has a positive temperature coefficient. Finally, the comparison of our numerical and analytical results indicates that the analytical Gaussian distribution model is valid and accurate in analysing I-V-T curves only for small barrier height inhomogeneity.展开更多
This paper reports that the Schottky barrier height modulation of NiSi/n-Si is experimentally investigated by adopting a novel silicide-as-diffusion-source technique, which avoids the damage to the NiSi/Si interface i...This paper reports that the Schottky barrier height modulation of NiSi/n-Si is experimentally investigated by adopting a novel silicide-as-diffusion-source technique, which avoids the damage to the NiSi/Si interface induced from the conventional dopant segregation method. In addition, the impact of post-BF2 implantation after silicidation on the surface morphology of Ni silicides is also illustrated. The thermal stability of Ni silicides can be improved by silicide- as-diffusion-source technique. Besides, the electron Schottky barrier height is successfully modulated by 0.11 eV at a boron dose of 1015 cm-2 in comparison with the non-implanted samples. The change of barrier height is not attributed to the phase change of silicide films but due to the boron pile-up at the interface of NiSi and Si substrate which causes the upward bending of conducting band. The results demonstrate the feasibility of novel silicide-as-diffusion-source technique for the fabrication of Schottky source/drain Si MOS devices.展开更多
A possible relationship between Schottky barrier heights and adhesion energies of different nonreactivemetal/semiconductor or insulator interfaces is presented .Various experimental evidences further sup-porting such ...A possible relationship between Schottky barrier heights and adhesion energies of different nonreactivemetal/semiconductor or insulator interfaces is presented .Various experimental evidences further sup-porting such a relationship are briefly exploited. The consequence indicated by such a relationship on the understanding of metal / ceramic interfaces is stressed.展开更多
We demonstrate that the insertion of a graphene tunnel barrier between Heusler alloy Co_2MnSi and the germanium(Ge) channel modulates the Schottky barrier height and the resistance–area product of the spin diode. W...We demonstrate that the insertion of a graphene tunnel barrier between Heusler alloy Co_2MnSi and the germanium(Ge) channel modulates the Schottky barrier height and the resistance–area product of the spin diode. We confirm that the Fermi level is depinned and a reduction in the electron Schottky barrier height(SBH) occurs following the insertion of the graphene layer between Co_2MnSi and Ge. The electron SBH is modulated in the 0.34 eV–0.61 eV range. Furthermore,the transport mechanism changes from rectifying to symmetric tunneling following the insertion. This behavior provides a pathway for highly efficient spin injection from a Heusler alloy into a Ge channel with high electron and hole mobility.展开更多
This paper describes the fabrication and electrical characteristics of Ti/4H-SiC Schottky barrier diodes (SBDs). The ideality factor n = 1.08 and effective Schottky barrier heightφ= 1.05eV of the SBDs were measured...This paper describes the fabrication and electrical characteristics of Ti/4H-SiC Schottky barrier diodes (SBDs). The ideality factor n = 1.08 and effective Schottky barrier heightφ= 1.05eV of the SBDs were measured with the method of forward current density-voltage (J-V). A low reverse leakage current below 5.96 ×10^-3A/cm^2 at a bias voltage of - 1. 1kV was obtained. By using B^+ implantation,an amorphous layer as the edge termination was formed. We used the PECVD SiO2 as the field plate dielectric. The SBDs have an on-state current density of 430A/cm^2 at a forward voltage drop of about 4V. The specific on-resistance Ro, was found to be 6. 77mΩ2 · cm^2 .展开更多
Ultra thin epitaxial CoSi 2 films are fabricated by solid state reaction of a deposited bilayer of Co(3nm)/Ti (1nm) on n Si(100) substrates at different temperatures.The local barrier heights of the CoSi 2/Si cont...Ultra thin epitaxial CoSi 2 films are fabricated by solid state reaction of a deposited bilayer of Co(3nm)/Ti (1nm) on n Si(100) substrates at different temperatures.The local barrier heights of the CoSi 2/Si contacts are determined by using the ballistic electron emission microscopy (BEEM) and its spectroscopy (BEES) at low temperature.For CoSi 2/Si contact annealed at 800℃,the spatial distribution of barrier heights,which have mean barrier height of 599meV and a standard deviation of 21meV,obeys the Gaussian Function.However,for a sample that is annealed at 700℃,the barrier heights of it are more inhomogenous.Its local barrier heights range from 152meV to 870meV,which implies the large inhomogeneity of the CoSi 2 film.展开更多
Reducing the Schottky barrier height(SBH)and even achieving the transition from Schottky contacts to Ohmic contacts are key challenges of achieving high energy efficiency and high-performance power devices.In this pap...Reducing the Schottky barrier height(SBH)and even achieving the transition from Schottky contacts to Ohmic contacts are key challenges of achieving high energy efficiency and high-performance power devices.In this paper,the modulation effects of biaxial strain on the electronic properties and Schottky barrier of Mo Si_(2)N_(4)(MSN)/graphene and WSi_(2)N_(4)(WSN)/graphene heterojunctions are examined by using first principles calculations.After the construction of heterojunctions,the electronic structures of MSN,WSN,and graphene are well preserved.Herein,we show that by applying suitable external strain to a heterojunction stacked by MSN or WSN—an emerging two-dimensional(2D)semiconductor family with excellent mechanical properties—and graphene,the heterojunction can be transformed from Schottky ptype contacts into n-type contacts,even highly efficient Ohmic contacts,making it of critical importance to unleash the tremendous potentials of graphene-based van der Waals(vd W)heterojunctions.Not only are these findings invaluable for designing high-performance graphene-based electronic devices,but also they provide an effective route to realizing dynamic switching either between n-type and p-type Schottky contacts,or between Schottky contacts and Ohmic contacts.展开更多
In this paper, we propose a novel Schottky barrier MOSFET structure, in which the silicide source/drain is designed on the buried metal (SSDOM). The source/drain region consists of two layers of silicide materials. ...In this paper, we propose a novel Schottky barrier MOSFET structure, in which the silicide source/drain is designed on the buried metal (SSDOM). The source/drain region consists of two layers of silicide materials. Two Schottky barriers are formed between the silicide layers and the silicon channel. In the device design, the top barrier is lower and the bottom is higher. The lower top contact barrier is to provide higher on-state current, and the higher bottom contact barrier to reduce the off-state current. To achieve this, ErSi is proposed for the top silicide and CoSi2 for the bottom in the n-channel ease. The 50 nm n-channel SSDOM is thus simulated to analyse the performance of the SSDOM device. In the simulations, the top contact barrier is 0.2e V (for ErSi) and the bottom barrier is 0.6 eV (for CoSi2). Compared with the corresponding conventional Schottky barrier MOSFET structures (CSB), the high on-state current of the SSDOM is maintained, and the off-state current is efficiently reduced. Thus, the high drive ability (1.2 mA/μm at Vds = 1 V, Vgs = 2 V) and the high Ion/Imin ratio (10^6) are both achieved by applying the SSDOM structure.展开更多
Ion-implantation layers are fabricated by multiple nitrogen ion-implantations (3 times for sample A and 4 times for sample B) into a p-type 4H-SiC epitaxial layer. The implantation depth profiles are calculated by u...Ion-implantation layers are fabricated by multiple nitrogen ion-implantations (3 times for sample A and 4 times for sample B) into a p-type 4H-SiC epitaxial layer. The implantation depth profiles are calculated by using the Monte Carlo simulator TRIM. The fabrication process and the I-V and C V characteristics of the lateral Ti/4H-SiC Schottky barrier diodes (SBDs) fabricated on these multiple box-like ion-implantation layers are presented in detail. Measurements of the reverse I V characteristics demonstrate a low reverse current, which is good enough for many SiC-based devices such as SiC metal-semiconductor field-effect transistors (MESFETs), and SiC static induction transistors (SITs). The parameters of the diodes are extracted from the forward I-V and C-V characteristics. The values of ideality factor n of SBDs for samples A and B are 3.0 and 3.5 respectively, and the values of series resistance Rs are 11.9 and 1.0 kf~ respectively. The values of barrier height φB of Ti/4H-SiC are 0.95 and 0.72 eV obtained by the I-V method and 1.14 and 0.93 eV obtained by the C-V method for samples A and B respectively. The activation rates for the implanted nitrogen ions of samples A and B are 2% and 4% respectively extracted from C V testing results.展开更多
We report on the temperature-dependent Schottky barrier in organic solar cells based on PTB7:PC71BM.The ideality factor is found to increase with temperature decreasing,which is explained by a model in which the solar...We report on the temperature-dependent Schottky barrier in organic solar cells based on PTB7:PC71BM.The ideality factor is found to increase with temperature decreasing,which is explained by a model in which the solar cell is taken as Schottky barrier diode.Accordingly,the dark current in the device originates from the thermally emitted electrons across the Schottky barrier.The fittings obtained with the thermal emission theory are systematically studied at different temperatures.It is concluded that the blend/Ca/Al interface presents great inhomogeneity,which can be described by 2 sets of Gaussian distributions with large zero bias standard deviations.With the decrease of temperature,electrons favor going across the Schottky barrier patches with lower barrier height and as a consequence the ideally factor significantly increases at low temperature.展开更多
Hexagonal microtube ZnO was firstly grown on single crystal p-Si (111) substrates by hydrothermal method, and fabricated Ag/n-ZnO and Au/n-ZnO Schottky junction. Schottky effective barrier heights were calculated by I...Hexagonal microtube ZnO was firstly grown on single crystal p-Si (111) substrates by hydrothermal method, and fabricated Ag/n-ZnO and Au/n-ZnO Schottky junction. Schottky effective barrier heights were calculated by I-V measurement. It is confirmed that the presence of a large amount of surface states related possibly to lattice imperfections existed near the surface leads to the pinning of the surface Fermi level at 0.35eV below the conduction-band edge. Then the fabricated Schottky barrier junctions are evaluated for their use as UV photodetectors.展开更多
提出了一种考虑 Schottky结势垒不均匀性和界面层作用的 Si C Schottky二极管 ( SBD)正向特性模型 ,势垒的不均匀性来自于 Si C外延层上的各种缺陷 ,而界面层上的压降会使正向 Schottky结的有效势垒增高 .该模型能够对不同温度下 Si C S...提出了一种考虑 Schottky结势垒不均匀性和界面层作用的 Si C Schottky二极管 ( SBD)正向特性模型 ,势垒的不均匀性来自于 Si C外延层上的各种缺陷 ,而界面层上的压降会使正向 Schottky结的有效势垒增高 .该模型能够对不同温度下 Si C Schottky结正向特性很好地进行模拟 ,模拟结果和测量数据相符 .它更适用于考虑器件温度变化的场合 ,从机理上说明了理想因子、有效势垒和温度的关系 .展开更多
Recently GaN-based high electron mobility transistors (HEMTs) have revealed the superior properties of a high breakdown field and high electron saturation velocity. Reduction of the gate leakage current is one of th...Recently GaN-based high electron mobility transistors (HEMTs) have revealed the superior properties of a high breakdown field and high electron saturation velocity. Reduction of the gate leakage current is one of the key issues to be solved for their further improvement. This paper reports that an Al layer as thin as 3 nm was inserted between the conventional Ni/Au Schottky contact and n-GaN epilayers, and the Schottky behaviour of Al/Ni/Au contact was investigated under various annealing conditions by current-voltage (I-V) measurements. A non-linear fitting method was used to extract the contact parameters from the I-V characteristic curves. Experimental results indicate that reduction of the gate leakage current by as much as four orders of magnitude was successfully recorded by thermal annealing. And high quality Schottky contact with a barrier height of 0.875 eV and the lowest reverse-bias leakage current, respectively, can be obtained under 12 min annealing at 450 ℃ in N2 ambience.展开更多
In this paper, we investigate the influence of deep level defects on the electrical properties of Ni/4H-SiC Schottky diodes by analyzing device current-voltage(I-V) characteristics and deep-level transient spectra(DLT...In this paper, we investigate the influence of deep level defects on the electrical properties of Ni/4H-SiC Schottky diodes by analyzing device current-voltage(I-V) characteristics and deep-level transient spectra(DLTS). Two Schottky barrier heights(SBHs) with different temperature dependences are found in Ni/4 H-SiC Schottky diode above room temperature. DLTS measurements further reveal that two kinds of defects Z_(1/2) and Ti(c)~a are located near the interface between Ni and SiC with the energy levels of E_C-0.67 eV and E_C-0.16 eV respectively. The latter one as the ionized titanium acceptor residing at cubic Si lattice site is thought to be responsible for the low SBH in the localized region of the diode, and therefore inducing the high reverse leakage current of the diode. The experimental results indicate that the Ti(c)~a defect has a strong influence on the electrical and thermal properties of the 4 H-SiC Schottky diode.展开更多
Hysteresis current–voltage(Ⅰ–Ⅴ) characteristics are often observed in a highly non-ideal(n > 2) as-deposited nickel(Ni)/4 H-SiC Schottky contact. However, we find that this kind of hysteresis effect also exists...Hysteresis current–voltage(Ⅰ–Ⅴ) characteristics are often observed in a highly non-ideal(n > 2) as-deposited nickel(Ni)/4 H-SiC Schottky contact. However, we find that this kind of hysteresis effect also exists in an as-deposited Ni/n-type4 H-SiC Schottky structure even if the ideality factor(n) is less than 1.2. The hysteresis Ⅰ–Ⅴ characteristics is studied in detail in this paper by using the various measurements including the hysteresis Ⅰ–Ⅴ, sequentialⅠ–Ⅴ sweeping, cycle Ⅰ–Ⅴ,constant reverse voltage stress(CRVS). The results show that the hysteresis Ⅰ–Ⅴ characteristics are strongly dependent on the sweeping voltage and post-deposition annealing(PDA). The high temperature PDA(800℃) can completely eliminate this hysteresis. Meanwhile, the magnitude of the hysteresis effect is shown to decrease in the sequential Ⅰ–Ⅴ sweeping measurement, which is attributed to the fact that the electrons tunnel from the 4 H-SiC to the localized states at the Ni/ntype 4 H-SiC interface. It is found that the application of the reverse bias stress has little effect on the emission of those trapped electrons. And a fraction of the trapped electrons will be gradually released with the time under the condition of air and with no bias. The possible physical charging mechanism of the interface traps is discussed on the basis of the experimental findings.展开更多
文摘Small high-quality Au/n type-GaAs Schottky barrier diodes (SBDs) with low reverse leakage current are produced using lithography. Their effective barrier heights (BHs) and ideality factors from current-voltage (I-V) characteristics are measured by a Pico ampere meter and home-built I-V instrument. In spite of the identical preparation of the diodes there is a diode-to-diode variation in ideality factor and barrier height parameters. Measurement of topology of a surface of a thin metal film with atomic force microscope (AFM) shows that Au-n type-GaAS SD consists of a set of parallel-connected micro and nanocontacts diodes with sizes approximately in a range of 100-200 nm. Between barrier height and ideality factor there is an inversely proportional dependency. With the diameter of contact increasing from 5 μm up to 200 μm, the barrier height increases from 0.833 up to 0.933 eV and its ideality factor decreases from 1.11 down to 1.006. These dependencies show the reduction of the contribution of the peripheral current with the diameter of contact increasing. We find the effect of series resistance on barrier height and ideality factor.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60876061)the Key Laboratory Science Foundation (Grant No. 20090C1403)
文摘This paper investigates the current-voltage (I-V) characteristics of Al/Ti/4H-SiC Schottky barrier diodes (SBDs) in the temperature range of 77 K-500 K, which shows that Al/Ti/4H SiC SBDs have good rectifying behaviour. An abnormal behaviour, in which the zero bias barrier height decreases while the ideality factor increases with decreasing temperature (T), has been successfully interpreted by using thermionic emission theory with Gaussian distribution of the barrier heights due to the inhomogeneous barrier height at the A1/Ti/4H-SiC interface. The effective Richardson constant A* = 154 A/cm2 . K2 is determined by means of a modified Richardson plot In(I0/T2) - (qσ)2/2(κT)2 versus q/kT, which is very close to the theoretical value 146 A/cm2 · K2.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61176092 and 61474094)the National Basic Research Program of China(Grant Nos.2012CB933503 and 2012CB632103)the National Natural Science Foundation of China–National Research Foundation of Korea Joint Research Project(Grant No.11311140251)
文摘Modulation of the Schottky barrier heights was successfully demonstrated for WNx/p-Ge and WNx/n-Ge contacts by increasing the nitrogen component in the WNx films. The WN0.38/p-Ge contact exhibits rectifying characteristic and an apparent Schottky barrier of 0.49 eV while the WN0.38/n-Ge Schottky contact exhibits quasi-Ohmic current–voltage characteristics. Dipoles formed at the contact interface by the difference of the Pauling electronegativities of Ge and N are confirmed to alleviate the Fermi-level pinning effect.
基金supported by Shanghai-Applied Materials Research and Development Fund (Grant Nos.07SA06 and 09700714200)Fok Ying Tong Education Foundation (Grant No.114006)
文摘This paper investigates the thermal activation behaviour of current in an inhomogeneous Schottky diode with a Gaussian distribution of barrier height by numerical simulation. The analytical Gaussian distribution model predicted that the I-VT curves may intersect with the possibility of the negative thermal activation of current, but may be contradictory to the thermionic emission mechanism in a Schottky diode. It shows that the cause of the unphysical phenomenon is related to the incorrect calculation of current across very low barriers. It proposes that junction voltage Vj, excluding the voltage drop across series resistance from the external bias, is a crucial parameter for correct calculation of the current across very low barriers. For correctly employing the thermionic emission model, Vj needs to be smaller than the barrier height Ф. With proper scheme of series resistance connection where the condition of Vj 〉 Ф is guaranteed, I-V T curves of an inhomogeneous Schottky diode with a Gaussian distribution of barrier height have been simulated, which demonstrate normal thermal activation. Although the calculated results exclude the intersecting possibility of I-V T curves with an assumption of temperature-independent series resistance, it shows that the intersecting is possible when the series resistance has a positive temperature coefficient. Finally, the comparison of our numerical and analytical results indicates that the analytical Gaussian distribution model is valid and accurate in analysing I-V-T curves only for small barrier height inhomogeneity.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60625403, 60806033, 90207004)the State Key Development Program for Basic Research of China (Grant No 2006CB302701)the NCET Program
文摘This paper reports that the Schottky barrier height modulation of NiSi/n-Si is experimentally investigated by adopting a novel silicide-as-diffusion-source technique, which avoids the damage to the NiSi/Si interface induced from the conventional dopant segregation method. In addition, the impact of post-BF2 implantation after silicidation on the surface morphology of Ni silicides is also illustrated. The thermal stability of Ni silicides can be improved by silicide- as-diffusion-source technique. Besides, the electron Schottky barrier height is successfully modulated by 0.11 eV at a boron dose of 1015 cm-2 in comparison with the non-implanted samples. The change of barrier height is not attributed to the phase change of silicide films but due to the boron pile-up at the interface of NiSi and Si substrate which causes the upward bending of conducting band. The results demonstrate the feasibility of novel silicide-as-diffusion-source technique for the fabrication of Schottky source/drain Si MOS devices.
文摘A possible relationship between Schottky barrier heights and adhesion energies of different nonreactivemetal/semiconductor or insulator interfaces is presented .Various experimental evidences further sup-porting such a relationship are briefly exploited. The consequence indicated by such a relationship on the understanding of metal / ceramic interfaces is stressed.
基金Project supported by the National Natural Science Foundation of China(Grant No.61504107)the Fundamental Research Funds for the Central Universities,China(Grant Nos.3102014JCQ01059 and 3102015ZY043)
文摘We demonstrate that the insertion of a graphene tunnel barrier between Heusler alloy Co_2MnSi and the germanium(Ge) channel modulates the Schottky barrier height and the resistance–area product of the spin diode. We confirm that the Fermi level is depinned and a reduction in the electron Schottky barrier height(SBH) occurs following the insertion of the graphene layer between Co_2MnSi and Ge. The electron SBH is modulated in the 0.34 eV–0.61 eV range. Furthermore,the transport mechanism changes from rectifying to symmetric tunneling following the insertion. This behavior provides a pathway for highly efficient spin injection from a Heusler alloy into a Ge channel with high electron and hole mobility.
文摘This paper describes the fabrication and electrical characteristics of Ti/4H-SiC Schottky barrier diodes (SBDs). The ideality factor n = 1.08 and effective Schottky barrier heightφ= 1.05eV of the SBDs were measured with the method of forward current density-voltage (J-V). A low reverse leakage current below 5.96 ×10^-3A/cm^2 at a bias voltage of - 1. 1kV was obtained. By using B^+ implantation,an amorphous layer as the edge termination was formed. We used the PECVD SiO2 as the field plate dielectric. The SBDs have an on-state current density of 430A/cm^2 at a forward voltage drop of about 4V. The specific on-resistance Ro, was found to be 6. 77mΩ2 · cm^2 .
文摘Ultra thin epitaxial CoSi 2 films are fabricated by solid state reaction of a deposited bilayer of Co(3nm)/Ti (1nm) on n Si(100) substrates at different temperatures.The local barrier heights of the CoSi 2/Si contacts are determined by using the ballistic electron emission microscopy (BEEM) and its spectroscopy (BEES) at low temperature.For CoSi 2/Si contact annealed at 800℃,the spatial distribution of barrier heights,which have mean barrier height of 599meV and a standard deviation of 21meV,obeys the Gaussian Function.However,for a sample that is annealed at 700℃,the barrier heights of it are more inhomogenous.Its local barrier heights range from 152meV to 870meV,which implies the large inhomogeneity of the CoSi 2 film.
基金Project supported by the Industry and Education Combination Innovation Platform of Intelligent Manufacturing and Graduate Joint Training Base at Guizhou University,China(Grant No.2020-52000083-01-324061)the National Natural Science Foundation of China(Grant No.61264004)the High-level Creative Talent Training Program in Guizhou Province,China(Grant No.[2015]4015)。
文摘Reducing the Schottky barrier height(SBH)and even achieving the transition from Schottky contacts to Ohmic contacts are key challenges of achieving high energy efficiency and high-performance power devices.In this paper,the modulation effects of biaxial strain on the electronic properties and Schottky barrier of Mo Si_(2)N_(4)(MSN)/graphene and WSi_(2)N_(4)(WSN)/graphene heterojunctions are examined by using first principles calculations.After the construction of heterojunctions,the electronic structures of MSN,WSN,and graphene are well preserved.Herein,we show that by applying suitable external strain to a heterojunction stacked by MSN or WSN—an emerging two-dimensional(2D)semiconductor family with excellent mechanical properties—and graphene,the heterojunction can be transformed from Schottky ptype contacts into n-type contacts,even highly efficient Ohmic contacts,making it of critical importance to unleash the tremendous potentials of graphene-based van der Waals(vd W)heterojunctions.Not only are these findings invaluable for designing high-performance graphene-based electronic devices,but also they provide an effective route to realizing dynamic switching either between n-type and p-type Schottky contacts,or between Schottky contacts and Ohmic contacts.
基金Project supported by the National Natural Science Foundation of China (Grant No 60506009).
文摘In this paper, we propose a novel Schottky barrier MOSFET structure, in which the silicide source/drain is designed on the buried metal (SSDOM). The source/drain region consists of two layers of silicide materials. Two Schottky barriers are formed between the silicide layers and the silicon channel. In the device design, the top barrier is lower and the bottom is higher. The lower top contact barrier is to provide higher on-state current, and the higher bottom contact barrier to reduce the off-state current. To achieve this, ErSi is proposed for the top silicide and CoSi2 for the bottom in the n-channel ease. The 50 nm n-channel SSDOM is thus simulated to analyse the performance of the SSDOM device. In the simulations, the top contact barrier is 0.2e V (for ErSi) and the bottom barrier is 0.6 eV (for CoSi2). Compared with the corresponding conventional Schottky barrier MOSFET structures (CSB), the high on-state current of the SSDOM is maintained, and the off-state current is efficiently reduced. Thus, the high drive ability (1.2 mA/μm at Vds = 1 V, Vgs = 2 V) and the high Ion/Imin ratio (10^6) are both achieved by applying the SSDOM structure.
文摘Ion-implantation layers are fabricated by multiple nitrogen ion-implantations (3 times for sample A and 4 times for sample B) into a p-type 4H-SiC epitaxial layer. The implantation depth profiles are calculated by using the Monte Carlo simulator TRIM. The fabrication process and the I-V and C V characteristics of the lateral Ti/4H-SiC Schottky barrier diodes (SBDs) fabricated on these multiple box-like ion-implantation layers are presented in detail. Measurements of the reverse I V characteristics demonstrate a low reverse current, which is good enough for many SiC-based devices such as SiC metal-semiconductor field-effect transistors (MESFETs), and SiC static induction transistors (SITs). The parameters of the diodes are extracted from the forward I-V and C-V characteristics. The values of ideality factor n of SBDs for samples A and B are 3.0 and 3.5 respectively, and the values of series resistance Rs are 11.9 and 1.0 kf~ respectively. The values of barrier height φB of Ti/4H-SiC are 0.95 and 0.72 eV obtained by the I-V method and 1.14 and 0.93 eV obtained by the C-V method for samples A and B respectively. The activation rates for the implanted nitrogen ions of samples A and B are 2% and 4% respectively extracted from C V testing results.
文摘We report on the temperature-dependent Schottky barrier in organic solar cells based on PTB7:PC71BM.The ideality factor is found to increase with temperature decreasing,which is explained by a model in which the solar cell is taken as Schottky barrier diode.Accordingly,the dark current in the device originates from the thermally emitted electrons across the Schottky barrier.The fittings obtained with the thermal emission theory are systematically studied at different temperatures.It is concluded that the blend/Ca/Al interface presents great inhomogeneity,which can be described by 2 sets of Gaussian distributions with large zero bias standard deviations.With the decrease of temperature,electrons favor going across the Schottky barrier patches with lower barrier height and as a consequence the ideally factor significantly increases at low temperature.
基金National Natural Science Foundation of China(60390073) National"973"Project of China(51310209-4)
文摘Hexagonal microtube ZnO was firstly grown on single crystal p-Si (111) substrates by hydrothermal method, and fabricated Ag/n-ZnO and Au/n-ZnO Schottky junction. Schottky effective barrier heights were calculated by I-V measurement. It is confirmed that the presence of a large amount of surface states related possibly to lattice imperfections existed near the surface leads to the pinning of the surface Fermi level at 0.35eV below the conduction-band edge. Then the fabricated Schottky barrier junctions are evaluated for their use as UV photodetectors.
文摘提出了一种考虑 Schottky结势垒不均匀性和界面层作用的 Si C Schottky二极管 ( SBD)正向特性模型 ,势垒的不均匀性来自于 Si C外延层上的各种缺陷 ,而界面层上的压降会使正向 Schottky结的有效势垒增高 .该模型能够对不同温度下 Si C Schottky结正向特性很好地进行模拟 ,模拟结果和测量数据相符 .它更适用于考虑器件温度变化的场合 ,从机理上说明了理想因子、有效势垒和温度的关系 .
文摘Recently GaN-based high electron mobility transistors (HEMTs) have revealed the superior properties of a high breakdown field and high electron saturation velocity. Reduction of the gate leakage current is one of the key issues to be solved for their further improvement. This paper reports that an Al layer as thin as 3 nm was inserted between the conventional Ni/Au Schottky contact and n-GaN epilayers, and the Schottky behaviour of Al/Ni/Au contact was investigated under various annealing conditions by current-voltage (I-V) measurements. A non-linear fitting method was used to extract the contact parameters from the I-V characteristic curves. Experimental results indicate that reduction of the gate leakage current by as much as four orders of magnitude was successfully recorded by thermal annealing. And high quality Schottky contact with a barrier height of 0.875 eV and the lowest reverse-bias leakage current, respectively, can be obtained under 12 min annealing at 450 ℃ in N2 ambience.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0400402)
文摘In this paper, we investigate the influence of deep level defects on the electrical properties of Ni/4H-SiC Schottky diodes by analyzing device current-voltage(I-V) characteristics and deep-level transient spectra(DLTS). Two Schottky barrier heights(SBHs) with different temperature dependences are found in Ni/4 H-SiC Schottky diode above room temperature. DLTS measurements further reveal that two kinds of defects Z_(1/2) and Ti(c)~a are located near the interface between Ni and SiC with the energy levels of E_C-0.67 eV and E_C-0.16 eV respectively. The latter one as the ionized titanium acceptor residing at cubic Si lattice site is thought to be responsible for the low SBH in the localized region of the diode, and therefore inducing the high reverse leakage current of the diode. The experimental results indicate that the Ti(c)~a defect has a strong influence on the electrical and thermal properties of the 4 H-SiC Schottky diode.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61804118,61774117,and 61774119)the Fundamental Research Funds for the Central Universities,China(Grant Nos.20101185935 and 20106186647)+2 种基金the National Key Basic Research Program of China(Grant No.2015CB759600)the Shaanxi Key Research and Development Program,China(Grant No.2018ZDXM-GY-008)the Natural Science Basic Research Plan in Shaanxi Province,China(Grant No.2017JM6003)
文摘Hysteresis current–voltage(Ⅰ–Ⅴ) characteristics are often observed in a highly non-ideal(n > 2) as-deposited nickel(Ni)/4 H-SiC Schottky contact. However, we find that this kind of hysteresis effect also exists in an as-deposited Ni/n-type4 H-SiC Schottky structure even if the ideality factor(n) is less than 1.2. The hysteresis Ⅰ–Ⅴ characteristics is studied in detail in this paper by using the various measurements including the hysteresis Ⅰ–Ⅴ, sequentialⅠ–Ⅴ sweeping, cycle Ⅰ–Ⅴ,constant reverse voltage stress(CRVS). The results show that the hysteresis Ⅰ–Ⅴ characteristics are strongly dependent on the sweeping voltage and post-deposition annealing(PDA). The high temperature PDA(800℃) can completely eliminate this hysteresis. Meanwhile, the magnitude of the hysteresis effect is shown to decrease in the sequential Ⅰ–Ⅴ sweeping measurement, which is attributed to the fact that the electrons tunnel from the 4 H-SiC to the localized states at the Ni/ntype 4 H-SiC interface. It is found that the application of the reverse bias stress has little effect on the emission of those trapped electrons. And a fraction of the trapped electrons will be gradually released with the time under the condition of air and with no bias. The possible physical charging mechanism of the interface traps is discussed on the basis of the experimental findings.