Let Γ?R;be a regular anisotropic fractal. We discuss the problem of the negative spectrum for the Schr?dinger operators associated with the formal expression H;=id-?+βtr;,β∈R,acting in the anisotropic Sobolev spac...Let Γ?R;be a regular anisotropic fractal. We discuss the problem of the negative spectrum for the Schr?dinger operators associated with the formal expression H;=id-?+βtr;,β∈R,acting in the anisotropic Sobolev space W;(R;), where ? is the Dirichlet Laplanian in R;and tr;is a fractal potential(distribution) supported by Γ.展开更多
Let L:=-△+V be the Schrodinger operator on R^(n)with n≥3,where V is a non-negative potential satisfying△^(-1)(V)∈L^(∞)(R^(n)).Let w be an L-harmonic function,determined by V,satisfying that there exists a positiv...Let L:=-△+V be the Schrodinger operator on R^(n)with n≥3,where V is a non-negative potential satisfying△^(-1)(V)∈L^(∞)(R^(n)).Let w be an L-harmonic function,determined by V,satisfying that there exists a positive constantδsuch that,for any x∈Rn,0<δ≤w(x)≤1.Assume that p(·):R^(n)→(0,1]is a variable exponent satisfying the globally log-Hölder continuous condition.In this article,the authors show that the mappings HL^(p)(·))(R^(n))■f■wf∈H^(p)(·)(R^(n))and HL^(p(·))(R^(n))■f■(-△)^(1/2)L^(-1/2)(f)∈H^(p(·))(R^(n))are isomorphisms between the variable Hardy spaces HL^(p(·))(R^(n)),associated with L,and the variable Hardy spaces H^(p(·))(R^(n)).展开更多
Let L =-?+V be a Schr?dinger operator on R^n(n ≥ 3), where the non-negative potential V belongs to reverse H?lder class RH_(q1) for q_1>n/2. Let H_L^p(R^n)be the Hardy space associated with L. In this paper, we co...Let L =-?+V be a Schr?dinger operator on R^n(n ≥ 3), where the non-negative potential V belongs to reverse H?lder class RH_(q1) for q_1>n/2. Let H_L^p(R^n)be the Hardy space associated with L. In this paper, we consider the commutator[b,T_α], which associated with the Riesz transform T_α= V~α(-?+V)^(-α) with 0 < α ≤ 1,and a locally integrable function b belongs to the new Campanato space Λ_β~θ(ρ). We establish the boundedness of [b,T_α] from L^p(R^n) to L^q(R^n) for 1 < p < q_1/α with 1/q = 1/p-β/n. We also show that [b,T_α] is bounded from H_L^p(R^n) to L^q(R^n) when n/(n+ β) < p ≤ 1,1/q = 1/p-β/n. Moreover, we prove that [b,T_α] maps H_L^(n/n+β)(~Rn)continuously into weak L^1(R^n).展开更多
Abstract. Let H^n be the Heisenberg group and Q = 2n+2 be its homogeneous dimen- sion. In this paper, we consider the Schr6dinger operator -△H^n +V, where △H^n is the sub-Laplacian and V is the nonnegative potenti...Abstract. Let H^n be the Heisenberg group and Q = 2n+2 be its homogeneous dimen- sion. In this paper, we consider the Schr6dinger operator -△H^n +V, where △H^n is the sub-Laplacian and V is the nonnegative potential belonging to the reverse H61der class Bql for ql _〉 Q/2. We show that the operators T1 = V(-△H^n-In +V)-1 and T2 = V1/2(-△H^n-V)-1/2 are both bounded from 1 n HL^1(H^n ) into L1(H^n). Our results are also valid on the stratified Lie group.展开更多
In this work, we prove the existence and uniqueness of the solution of the generalized Schrödinger equation in the periodic distributional space P’. Furthermore, we prove that the solution depends continuously r...In this work, we prove the existence and uniqueness of the solution of the generalized Schrödinger equation in the periodic distributional space P’. Furthermore, we prove that the solution depends continuously respect to the initial data in P’. Introducing a family of weakly continuous operators, we prove that this family is a semigroup of operators in P’. Then, with this family of operators, we get a fine version of the existence and dependency continuous theorem obtained. Finally, we provide some consequences of this study.展开更多
In this work, we prove the existence and uniqueness of the solution of the generalized Schrödinger type homogeneous model in the periodic distributional space P’. Furthermore, we prove that the solution depends ...In this work, we prove the existence and uniqueness of the solution of the generalized Schrödinger type homogeneous model in the periodic distributional space P’. Furthermore, we prove that the solution depends continuously respect to the initial data in P’. Introducing a family of weakly continuous operators, we prove that this family is a group of operators in P’. Then, with this family of operators, we get a fine version of the existence and dependency continuous theorem obtained. Finally, we give some remarks derived from this study.展开更多
Let be a Schr?dinger operator on . We show that gradient estimates for the heat kernel of with upper Gaussian bounds imply polynomial decay for the kernels of certain smooth dyadic spectral operators. The latter decay...Let be a Schr?dinger operator on . We show that gradient estimates for the heat kernel of with upper Gaussian bounds imply polynomial decay for the kernels of certain smooth dyadic spectral operators. The latter decay property has been known to play an important role in the Littlewood-Paley theory for and Sobolev spaces. We are able to establish the result by modifying Hebisch and the author’s recent proofs. We give a counterexample in one dimension to show that there exists in the Schwartz class such that the long time gradient heat kernel estimate fails.展开更多
In this paper,we are concerned with the existence of multiple solutions to the critical magnetic Schrödinger equation(-i▽-a(x))^(2)u+⒂λV(x)u=p|u|^(p-2)u+(∫R(n)|u(y)|^(2)_(a)^(*)/|x-y|^(a)dy)|u|2_(a)^(*)-2_(u)...In this paper,we are concerned with the existence of multiple solutions to the critical magnetic Schrödinger equation(-i▽-a(x))^(2)u+⒂λV(x)u=p|u|^(p-2)u+(∫R(n)|u(y)|^(2)_(a)^(*)/|x-y|^(a)dy)|u|2_(a)^(*)-2_(u)in R^(N),(0.1)where N≥4,2≤p<2^(*),2_α^(*)=(2N-α)/(N-2)with 0<α<4,λ>0,μ∈R,A(x)=(A_(1)(x),A_(2)(x),…,A_(N)(x))is a real local Hölder continuous vector function,i is the imaginary unit,and V(x)is a real valued potential function on R^(N).Supposing thatΩ=int V^(-1)(0)■R^(N)is bounded,we show that problem(0.1)possesses at least cat_(Ω)(Ω)nontrivial solutions ifλis large.展开更多
In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al...In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al.in J Sci Comput 66:321–345,2016;Dong and Wang in J Comput Appl Math 380:1–11,2020)for a one-dimensional stationary Schrödinger equation.Previous work showed that penalty parameters were required to be positive in error analysis,but the methods with zero penalty parameters worked fine in numerical simulations on coarse meshes.In this work,by performing extensive numerical experiments,we discover that zero penalty parameters lead to resonance errors in the multiscale DG methods,and taking positive penalty parameters can effectively reduce resonance errors and make the matrix in the global linear system have better condition numbers.展开更多
The nonlinear interactions between the monochromatic wave have been considered by K. Matsunchi, who also proposed one class of the nonlinear Schrdinger equation system with wave operator. We also obtain the same type ...The nonlinear interactions between the monochromatic wave have been considered by K. Matsunchi, who also proposed one class of the nonlinear Schrdinger equation system with wave operator. We also obtain the same type of equations, which are satisfied by transverse velocity of higher frequency electron, as we study soliton in plasma physics. In this paper, under some condition we study the existence and nonexistence for this equations in the cases possessing different signs in nonlinear term.展开更多
Schrödinger equations are very common equations in physics and mathematics for nonlinear physics to model the dynamics of wave propagation in waveguides such as power lines, atomic chains, optical fibers, and eve...Schrödinger equations are very common equations in physics and mathematics for nonlinear physics to model the dynamics of wave propagation in waveguides such as power lines, atomic chains, optical fibers, and even in quantum mechanics. But all these equations are most often studied without worrying about what would happen if this equation were maintained, that is to say, had a second member synonymous with an external force. It is true that on a physical level, such equations can be considered as describing the generation of waves on a waveguide using an external force. However, the in-depth analysis of this aspect is not at the center of our reflection in this article, but for us, it is a question of proposing exact solutions to this type of equation and above all proposing the general form of the external force so that the obtaining exact solutions is possible.展开更多
基金supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.13KJB110010)the Pre Study Foundation of Nanjing University of Finance&Economics(Grant No.YYJ2013016)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Let Γ?R;be a regular anisotropic fractal. We discuss the problem of the negative spectrum for the Schr?dinger operators associated with the formal expression H;=id-?+βtr;,β∈R,acting in the anisotropic Sobolev space W;(R;), where ? is the Dirichlet Laplanian in R;and tr;is a fractal potential(distribution) supported by Γ.
基金supported by the National Natural Science Foundation of China(11801555 and 11971058)the Fundamental Research Funds for the Central Universities(2020YQLX02)supported by the National Natural Science Foundation of China(11971058,11761131002 and 11671185)。
文摘Let L:=-△+V be the Schrodinger operator on R^(n)with n≥3,where V is a non-negative potential satisfying△^(-1)(V)∈L^(∞)(R^(n)).Let w be an L-harmonic function,determined by V,satisfying that there exists a positive constantδsuch that,for any x∈Rn,0<δ≤w(x)≤1.Assume that p(·):R^(n)→(0,1]is a variable exponent satisfying the globally log-Hölder continuous condition.In this article,the authors show that the mappings HL^(p)(·))(R^(n))■f■wf∈H^(p)(·)(R^(n))and HL^(p(·))(R^(n))■f■(-△)^(1/2)L^(-1/2)(f)∈H^(p(·))(R^(n))are isomorphisms between the variable Hardy spaces HL^(p(·))(R^(n)),associated with L,and the variable Hardy spaces H^(p(·))(R^(n)).
文摘Let L =-?+V be a Schr?dinger operator on R^n(n ≥ 3), where the non-negative potential V belongs to reverse H?lder class RH_(q1) for q_1>n/2. Let H_L^p(R^n)be the Hardy space associated with L. In this paper, we consider the commutator[b,T_α], which associated with the Riesz transform T_α= V~α(-?+V)^(-α) with 0 < α ≤ 1,and a locally integrable function b belongs to the new Campanato space Λ_β~θ(ρ). We establish the boundedness of [b,T_α] from L^p(R^n) to L^q(R^n) for 1 < p < q_1/α with 1/q = 1/p-β/n. We also show that [b,T_α] is bounded from H_L^p(R^n) to L^q(R^n) when n/(n+ β) < p ≤ 1,1/q = 1/p-β/n. Moreover, we prove that [b,T_α] maps H_L^(n/n+β)(~Rn)continuously into weak L^1(R^n).
文摘Abstract. Let H^n be the Heisenberg group and Q = 2n+2 be its homogeneous dimen- sion. In this paper, we consider the Schr6dinger operator -△H^n +V, where △H^n is the sub-Laplacian and V is the nonnegative potential belonging to the reverse H61der class Bql for ql _〉 Q/2. We show that the operators T1 = V(-△H^n-In +V)-1 and T2 = V1/2(-△H^n-V)-1/2 are both bounded from 1 n HL^1(H^n ) into L1(H^n). Our results are also valid on the stratified Lie group.
文摘In this work, we prove the existence and uniqueness of the solution of the generalized Schrödinger equation in the periodic distributional space P’. Furthermore, we prove that the solution depends continuously respect to the initial data in P’. Introducing a family of weakly continuous operators, we prove that this family is a semigroup of operators in P’. Then, with this family of operators, we get a fine version of the existence and dependency continuous theorem obtained. Finally, we provide some consequences of this study.
文摘In this work, we prove the existence and uniqueness of the solution of the generalized Schrödinger type homogeneous model in the periodic distributional space P’. Furthermore, we prove that the solution depends continuously respect to the initial data in P’. Introducing a family of weakly continuous operators, we prove that this family is a group of operators in P’. Then, with this family of operators, we get a fine version of the existence and dependency continuous theorem obtained. Finally, we give some remarks derived from this study.
文摘Let be a Schr?dinger operator on . We show that gradient estimates for the heat kernel of with upper Gaussian bounds imply polynomial decay for the kernels of certain smooth dyadic spectral operators. The latter decay property has been known to play an important role in the Littlewood-Paley theory for and Sobolev spaces. We are able to establish the result by modifying Hebisch and the author’s recent proofs. We give a counterexample in one dimension to show that there exists in the Schwartz class such that the long time gradient heat kernel estimate fails.
基金supported by the National Natural Science Foundation of China(12171212)。
文摘In this paper,we are concerned with the existence of multiple solutions to the critical magnetic Schrödinger equation(-i▽-a(x))^(2)u+⒂λV(x)u=p|u|^(p-2)u+(∫R(n)|u(y)|^(2)_(a)^(*)/|x-y|^(a)dy)|u|2_(a)^(*)-2_(u)in R^(N),(0.1)where N≥4,2≤p<2^(*),2_α^(*)=(2N-α)/(N-2)with 0<α<4,λ>0,μ∈R,A(x)=(A_(1)(x),A_(2)(x),…,A_(N)(x))is a real local Hölder continuous vector function,i is the imaginary unit,and V(x)is a real valued potential function on R^(N).Supposing thatΩ=int V^(-1)(0)■R^(N)is bounded,we show that problem(0.1)possesses at least cat_(Ω)(Ω)nontrivial solutions ifλis large.
基金supported by the National Science Foundation grant DMS-1818998.
文摘In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al.in J Sci Comput 66:321–345,2016;Dong and Wang in J Comput Appl Math 380:1–11,2020)for a one-dimensional stationary Schrödinger equation.Previous work showed that penalty parameters were required to be positive in error analysis,but the methods with zero penalty parameters worked fine in numerical simulations on coarse meshes.In this work,by performing extensive numerical experiments,we discover that zero penalty parameters lead to resonance errors in the multiscale DG methods,and taking positive penalty parameters can effectively reduce resonance errors and make the matrix in the global linear system have better condition numbers.
文摘The nonlinear interactions between the monochromatic wave have been considered by K. Matsunchi, who also proposed one class of the nonlinear Schrdinger equation system with wave operator. We also obtain the same type of equations, which are satisfied by transverse velocity of higher frequency electron, as we study soliton in plasma physics. In this paper, under some condition we study the existence and nonexistence for this equations in the cases possessing different signs in nonlinear term.
文摘Schrödinger equations are very common equations in physics and mathematics for nonlinear physics to model the dynamics of wave propagation in waveguides such as power lines, atomic chains, optical fibers, and even in quantum mechanics. But all these equations are most often studied without worrying about what would happen if this equation were maintained, that is to say, had a second member synonymous with an external force. It is true that on a physical level, such equations can be considered as describing the generation of waves on a waveguide using an external force. However, the in-depth analysis of this aspect is not at the center of our reflection in this article, but for us, it is a question of proposing exact solutions to this type of equation and above all proposing the general form of the external force so that the obtaining exact solutions is possible.