We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinear Schrodinger equation with the sextic operator under non-zero boundary conditions. Our analysis main...We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinear Schrodinger equation with the sextic operator under non-zero boundary conditions. Our analysis mainly focuses onthe dynamical properties of simple- and double-pole solutions. Firstly, through verification, we find that solutions undernon-zero boundary conditions can be transformed into solutions under zero boundary conditions, whether in simple-pole ordouble-pole cases. For the focusing case, in the investigation of simple-pole solutions, temporal periodic breather and thespatial-temporal periodic breather are obtained by modulating parameters. Additionally, in the case of multi-pole solitons,we analyze parallel-state solitons, bound-state solitons, and intersecting solitons, providing a brief analysis of their interactions.In the double-pole case, we observe that the two solitons undergo two interactions, resulting in a distinctive “triangle”crest. Furthermore, for the defocusing case, we briefly consider two situations of simple-pole solutions, obtaining one andtwo dark solitons.展开更多
The derivations of several conservation laws of the generalized nonlocal nonlinear Schrodinger equation are presented. These invaxiants are the number of particles, the momentum, the angular momentum and the Hamiltoni...The derivations of several conservation laws of the generalized nonlocal nonlinear Schrodinger equation are presented. These invaxiants are the number of particles, the momentum, the angular momentum and the Hamiltonian in the quantum mechanical analogy. The Lagrangian is also presented.展开更多
Nonlinear Schrodinger equation (NSE) arises in many physical problems. It is a very important equation. A lot of works studied the wellposed, the existence of solution of NSE etc. And there are many works studied the ...Nonlinear Schrodinger equation (NSE) arises in many physical problems. It is a very important equation. A lot of works studied the wellposed, the existence of solution of NSE etc. And there are many works studied the numerical methods for it. Recently, since the development of infinite dimensional dynamic system the dynamical behavior of NSE has been investigated. The paper [1] studied the long time wellposedness, the existence of universal attractor and the estimate of Lyapunov exponent for NSE with weakly damped. At the same time it was need to study the large time new computational methods and to discuss its convergence error estimate, the existence of approximate attractors etc. In this pape we study the NSE with weakly damped (1.1). We assume,where 0【λ【2 is a constant. If we wish to construct the higher accuracy computational scheme, it will be difficult that staigh from the equation (1.1). Therefore we start with (1. 4) and use fully discrete Fourier spectral method with time difference to展开更多
In this paper Lou's direct perturbation method is applied to the perturbed coupled nonlinear Schrodinger equations to obtain their asymptotical solutions, which include not only the zero-order solutions but also the ...In this paper Lou's direct perturbation method is applied to the perturbed coupled nonlinear Schrodinger equations to obtain their asymptotical solutions, which include not only the zero-order solutions but also the first-order modifications. Based on the asymptotical solutions, the effects of perturbations on soliton parameters and the collision between two solitons are then discussed in brief. Furthermore, we directly simulate the perturbed coupled nonlinear SchrSdinger equations by split-step Fourier method to check the validity of the direct perturbation method. It turns out that our analytical results are well supported by the numerical calculations.展开更多
In this article,we study the following fractional Schrodinger equation with electromagnetic fields and critical growth(-Δ)^sAu+V(x)u=|u|^2^*s-2)u+λf(x,|u|^2)u,x∈R^n,where(-Δ)^sA is the fractional magnetic operator...In this article,we study the following fractional Schrodinger equation with electromagnetic fields and critical growth(-Δ)^sAu+V(x)u=|u|^2^*s-2)u+λf(x,|u|^2)u,x∈R^n,where(-Δ)^sA is the fractional magnetic operator with 0<s<1,N>2s,λ>0,2^*s=2N/(N-2s),f is a continuous function,V∈C(R^n,R)and A∈C(R^n,R^n)are the electric and magnetic potentials,respectively.When V and f are asymptotically periodic in x,we prove that the equation has a ground state solution for largeλby Nehari method.展开更多
We use the 1-fold Darboux transformation (DT) of an inhomogeneous nonlinear Schrdinger equation (INLSE) to construct the deformed-soliton, breather, and rogue wave solutions explicitly. Furthermore, the obtained f...We use the 1-fold Darboux transformation (DT) of an inhomogeneous nonlinear Schrdinger equation (INLSE) to construct the deformed-soliton, breather, and rogue wave solutions explicitly. Furthermore, the obtained first-order deformed rogue wave solution, which is derived from the deformed breather solution through the Taylor expansion, is different from the known rogue wave solution of the nonlinear Schrdinger equation (NLSE). The effect of inhomogeneity is fully reflected in the variable height of the deformed soliton and the curved background of the deformed breather and rogue wave. By suitably adjusting the physical parameter, we show that a desired shape of the rogue wave can be generated. In particular, the newly constructed rogue wave can be reduced to the corresponding rogue wave of the nonlinear Schrdinger equation under a suitable parametric condition.展开更多
By giving prior assumptions on the form of the solutions, we succeed to find several exact solutions for a higher-order nonlinear Schroetinger equation derived from one important model in the study of atmospheric and ...By giving prior assumptions on the form of the solutions, we succeed to find several exact solutions for a higher-order nonlinear Schroetinger equation derived from one important model in the study of atmospheric and ocean dynamical systems. Our analytical solutions include bright and dark solitary waves, and periodical solutions, which can be used to explain atmospheric phenomena.展开更多
A pressure dependent Schrodinger equation is used to find the conditions that lead to superconductivity. When no pressure is exerted, the superconductor resistance vanishes beyond a critical temperature related to the...A pressure dependent Schrodinger equation is used to find the conditions that lead to superconductivity. When no pressure is exerted, the superconductor resistance vanishes beyond a critical temperature related to the repulsive force potential of the electron gass, where one assuming the electron total energy to be thermal, where applying mechanical pressure destroys Sc when it exceeds a certain critical value. However when the electron total energy is an assumed to be that of the free electron model and that the pressure is thermal and mechanical, the situation is different. The quantum expression for resistance shows that the increase of mechanical pressure increases the critical temperature. Such phenomenon is observed in high temperature cupper group.展开更多
In this paper,we study the Cauchy problem for the nonlinear Schrodinger equations with Coulomb potential i■_(t)u+△u+k/|x|u=λ/|u|^(p-l)u with 1<p≤5 on R^(3).Our results reveal the influence of the long range pot...In this paper,we study the Cauchy problem for the nonlinear Schrodinger equations with Coulomb potential i■_(t)u+△u+k/|x|u=λ/|u|^(p-l)u with 1<p≤5 on R^(3).Our results reveal the influence of the long range potential K|x|^(-1)on the existence and scattering theories for nonlinear Schrodinger equations.In particular,we prove the global existence when the Coulomb potential is attractive,i.e.,when K>0,and the scattering theory when the Coulomb potential is repulsive,i.e.,when K≤O.The argument is based on the newlyestablished interaction Morawetz-type inequalities and the equivalence of Sobolev norms for the Laplacian operator with the Coulomb potential.展开更多
The three-coupling modified nonlinear Schr?dinger(MNLS) equation with variable-coefficients is used to describe the dynamics of soliton in alpha helical protein. This MNLS equation with variable-coefficients is firstl...The three-coupling modified nonlinear Schr?dinger(MNLS) equation with variable-coefficients is used to describe the dynamics of soliton in alpha helical protein. This MNLS equation with variable-coefficients is firstly transformed to the MNLS equation with constant-coefficients by similarity transformation. And then the one-soliton and two-soliton solutions of the variable-coefficient-MNLS equation are obtained by solving the constant-coefficient-MNLS equation with Hirota method. The effects of different parameter conditions on the soliton solutions are discussed in detail. The interaction between two solitons is also discussed. Our results are helpful to understand the soliton dynamics in alpha helical protein.展开更多
A chain of novel higher order rational solutions with some parameters and interaction solutions of a(2+1)-dimensional reverse space–time nonlocal Schrodinger(NLS)equation was derived by a generalized Darboux transfor...A chain of novel higher order rational solutions with some parameters and interaction solutions of a(2+1)-dimensional reverse space–time nonlocal Schrodinger(NLS)equation was derived by a generalized Darboux transformation(DT)which is derived by Taylor expansion and determinants.We obtained a series of higher-order rational solutions by one spectral parameter and we could get the periodic wave solution and three kinds of interaction solutions,singular breather and periodic wave interaction solution,singular breather and traveling wave interaction solution,bimodal breather and periodic wave interaction solution by two spectral parameters.We found a general formula for these solutions in the form of determinants.We also analyzed the complex wave structures of the dynamic behaviors and the effects of special parameters and presented exact solutions for the(2+1)-dimensional reverse space–time nonlocal NLS equation.展开更多
Based on the generalized coupled nonlinear Schr¨odinger equation,we obtain the analytic four-bright–bright soliton solution by using the Hirota bilinear method.The interactions among four solitons are also studi...Based on the generalized coupled nonlinear Schr¨odinger equation,we obtain the analytic four-bright–bright soliton solution by using the Hirota bilinear method.The interactions among four solitons are also studied in detail.The results show that the interaction among four solitons mainly depends on the values of solution parameters;k1 and k2 mainly affect the two inboard solitons while k3 and k4 mainly affect the two outboard solitons;the pulse velocity and width mainly depend on the imaginary part of ki(i=1,2,3,4),while the pulse amplitude mainly depends on the real part of ki(i=1,2,3,4).展开更多
We exhibit some new dark soliton phenomena on the general nonzero background for a defocusing three-component nonlinear Schrodinger equation. As the plane wave background undergoes unitary transformation SU(3), we obt...We exhibit some new dark soliton phenomena on the general nonzero background for a defocusing three-component nonlinear Schrodinger equation. As the plane wave background undergoes unitary transformation SU(3), we obtain the general nonzero background and study its modulational instability by the linear stability analysis. On the basis of this background, we study the dynamics of one-dark soliton and two-dark-soliton phenomena, which are different from the dark solitons studied before. Furthermore, we use the numerical method for checking the stability of the one-dark-soliton solution. These results further enrich the content in nonlinear Schrodinger systems, and require more in-depth studies in the future.展开更多
The (2+1)-dimension nonlocal nonlinear Schrödinger (NLS) equation with the self-induced parity-time symmetric potential is introduced, which provides spatially two-dimensional analogues of the nonlocal NLS equati...The (2+1)-dimension nonlocal nonlinear Schrödinger (NLS) equation with the self-induced parity-time symmetric potential is introduced, which provides spatially two-dimensional analogues of the nonlocal NLS equation introduced by Ablowitz et al. [Phys. Rev. Lett. 110 (2013) 064105]. General periodic solutions are derived by the bilinear method. These periodic solutions behave as growing and decaying periodic line waves arising from the constant background and decaying back to the constant background again. By taking long wave limits of the obtained periodic solutions, rogue waves are obtained. It is also shown that these line rogue waves arise from the constant background with a line profile and disappear into the constant background again in the plane.展开更多
We look at the Vuilli (1999) write up of a generalized Schrodinger equation with its Ricci scalar inclusion, in curved space-time. This has a simplified version in Pre-Planckian regime, which leads to comparing a resu...We look at the Vuilli (1999) write up of a generalized Schrodinger equation with its Ricci scalar inclusion, in curved space-time. This has a simplified version in Pre-Planckian regime, which leads to comparing a resultant admissible wave function with Bohmian reformulations of quantum physics. As was done earlier, we compare this result with a formulation of a modified “Poisson” equation from Poissons and Will from 2014, and then use inflaton physics. The resulting inflaton is then compared to the wave functional in the first part of this document.展开更多
The paper presents a method of numerical solution of the Schrodinger equation, which combines the finite-difference and Monte-Carlo approaches. The resulting method was effective and economical and, to a certain exten...The paper presents a method of numerical solution of the Schrodinger equation, which combines the finite-difference and Monte-Carlo approaches. The resulting method was effective and economical and, to a certain extent, not improved, <em>i</em>.<em>e</em>. optimal. The method itself is formalized as an algorithm for the numerical solution of the Schrodinger equation for a molecule with an arbitrary number of quantum particles. The method is presented and simultaneously illustrated by examples of solving the one-dimensional and multidimensional Schrodinger equation in such problems: linear one-dimensional oscillator, hydrogen atom, ion and hydrogen molecule, water, benzene and metallic hydrogen.展开更多
The Finite-Difference Time-Domain (FDTD) method is a well-known technique for the analysis of quantum devices. It solves a discretized Schrodinger equation in an iterative process. However, the method provides only a ...The Finite-Difference Time-Domain (FDTD) method is a well-known technique for the analysis of quantum devices. It solves a discretized Schrodinger equation in an iterative process. However, the method provides only a second-order accurate numerical solution and requires that the spatial grid size and time step should satisfy a very restricted condition in order to prevent the numerical solution from diverging. In this article, we present a generalized FDTD method with absorbing boundary condition for solving the one-dimensional (1D) time-dependent Schr?dinger equation and obtain a more relaxed condition for stability. The generalized FDTD scheme is tested by simulating a particle moving in free space and then hitting an energy potential. Numerical results coincide with those obtained based on the theoretical analysis.展开更多
The Darboux transformation (DT) method is studied in a lot of local equations, but there are few of work to solve nonlocal equations by DT. In this letter, we solve the nonlocal nonlinear Schrödinger equation...The Darboux transformation (DT) method is studied in a lot of local equations, but there are few of work to solve nonlocal equations by DT. In this letter, we solve the nonlocal nonlinear Schrödinger equation (NNLSE) with the self-induced PT-symmetric potential by DT. Then the N-fold DT of NNLSE is derived with the help of the gauge transformation between the Lax pairs. Then we derive some novel exact solutions including the bright soliton, breather wave soliton. In particularly, the dynamic features of one-soliton, two-soliton, three-soliton solutions and the elastic interactions between the two solitons are displayed.展开更多
The study of physical systems endowed with a position-dependent mass (PDM) remains a fundamental issue of quantum mechanics. In this paper we use a new approach, recently developed by us for building the quantum kinet...The study of physical systems endowed with a position-dependent mass (PDM) remains a fundamental issue of quantum mechanics. In this paper we use a new approach, recently developed by us for building the quantum kinetic energy operator (KEO) within the Schrodinger equation, in order to construct a new class of exactly solvable models with a position varying mass, presenting a harmonic-oscillator-like spectrum. To do so we utilize the formalism of supersymmetric quantum mechanics (SUSY QM) along with the shape invariance condition. Recent outcomes of non-Hermitian quantum mechanics are also taken into account.展开更多
A new scale transformation method is used in solving the Schrodinger equation. With it, the uniform grids in the discretization in conventional metho d are changed into non-uniform grids. Consequently, in some cases, ...A new scale transformation method is used in solving the Schrodinger equation. With it, the uniform grids in the discretization in conventional metho d are changed into non-uniform grids. Consequently, in some cases, the computing quantity will be greatly reduced at keeping the required accuracy. The calcul ation of the quantized inversion layer in MOS structure is used to demonstrate t he efficiency of the new method.展开更多
基金the Fundamental Research Funds for the Central Universities(Grant No.2024MS126).
文摘We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinear Schrodinger equation with the sextic operator under non-zero boundary conditions. Our analysis mainly focuses onthe dynamical properties of simple- and double-pole solutions. Firstly, through verification, we find that solutions undernon-zero boundary conditions can be transformed into solutions under zero boundary conditions, whether in simple-pole ordouble-pole cases. For the focusing case, in the investigation of simple-pole solutions, temporal periodic breather and thespatial-temporal periodic breather are obtained by modulating parameters. Additionally, in the case of multi-pole solitons,we analyze parallel-state solitons, bound-state solitons, and intersecting solitons, providing a brief analysis of their interactions.In the double-pole case, we observe that the two solitons undergo two interactions, resulting in a distinctive “triangle”crest. Furthermore, for the defocusing case, we briefly consider two situations of simple-pole solutions, obtaining one andtwo dark solitons.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10474023 and 10674050) and Specialized Research Fund for the Doctoral Program of Higher Education (Grant No 20060574006).
文摘The derivations of several conservation laws of the generalized nonlocal nonlinear Schrodinger equation are presented. These invaxiants are the number of particles, the momentum, the angular momentum and the Hamiltonian in the quantum mechanical analogy. The Lagrangian is also presented.
文摘Nonlinear Schrodinger equation (NSE) arises in many physical problems. It is a very important equation. A lot of works studied the wellposed, the existence of solution of NSE etc. And there are many works studied the numerical methods for it. Recently, since the development of infinite dimensional dynamic system the dynamical behavior of NSE has been investigated. The paper [1] studied the long time wellposedness, the existence of universal attractor and the estimate of Lyapunov exponent for NSE with weakly damped. At the same time it was need to study the large time new computational methods and to discuss its convergence error estimate, the existence of approximate attractors etc. In this pape we study the NSE with weakly damped (1.1). We assume,where 0【λ【2 is a constant. If we wish to construct the higher accuracy computational scheme, it will be difficult that staigh from the equation (1.1). Therefore we start with (1. 4) and use fully discrete Fourier spectral method with time difference to
基金Project supported by the National Natural Science Foundation of China (Grant No 10575087) and the Natural Science Foundation of Zheiiang Province of China (Grant No 102053). 0ne of the authors (Lin) would like to thank Prof. Sen-yue Lou for many useful discussions.
文摘In this paper Lou's direct perturbation method is applied to the perturbed coupled nonlinear Schrodinger equations to obtain their asymptotical solutions, which include not only the zero-order solutions but also the first-order modifications. Based on the asymptotical solutions, the effects of perturbations on soliton parameters and the collision between two solitons are then discussed in brief. Furthermore, we directly simulate the perturbed coupled nonlinear SchrSdinger equations by split-step Fourier method to check the validity of the direct perturbation method. It turns out that our analytical results are well supported by the numerical calculations.
基金supported in part by the NationalNatural Science Foundation of China(11801153,11501403,11701322,11561072)the Honghe University Doctoral Research Programs(XJ17B11,XJ17B12,DCXL171027,201810687010)+4 种基金the Yunnan Province Applied Basic Research for Youths(2018FD085)the Yunnan Province Local University(Part)Basic Research Joint Project(2017FH001-013)the Natural Sciences Foundation of Yunnan Province(2016FB011)the Yunnan Province Applied Basic Research for General Project(2019FB001)Technology Innovation Team of University in Yunnan Province。
文摘In this article,we study the following fractional Schrodinger equation with electromagnetic fields and critical growth(-Δ)^sAu+V(x)u=|u|^2^*s-2)u+λf(x,|u|^2)u,x∈R^n,where(-Δ)^sA is the fractional magnetic operator with 0<s<1,N>2s,λ>0,2^*s=2N/(N-2s),f is a continuous function,V∈C(R^n,R)and A∈C(R^n,R^n)are the electric and magnetic potentials,respectively.When V and f are asymptotically periodic in x,we prove that the equation has a ground state solution for largeλby Nehari method.
基金the National Natural Science Foundation of China(Grant No.10971109)K.C.Wong Magna Fund in Ningbo University,China+1 种基金the Natural Science Foundation of Ningbo,China(Grant No.2011A610179)the DST,DAE-BRNS,UGC,CSIR,India
文摘We use the 1-fold Darboux transformation (DT) of an inhomogeneous nonlinear Schrdinger equation (INLSE) to construct the deformed-soliton, breather, and rogue wave solutions explicitly. Furthermore, the obtained first-order deformed rogue wave solution, which is derived from the deformed breather solution through the Taylor expansion, is different from the known rogue wave solution of the nonlinear Schrdinger equation (NLSE). The effect of inhomogeneity is fully reflected in the variable height of the deformed soliton and the curved background of the deformed breather and rogue wave. By suitably adjusting the physical parameter, we show that a desired shape of the rogue wave can be generated. In particular, the newly constructed rogue wave can be reduced to the corresponding rogue wave of the nonlinear Schrdinger equation under a suitable parametric condition.
基金The project supported by National Natural Science Foundations of China under Grant Nos. 90203001, 10475055, 40305009, and 10547124
文摘By giving prior assumptions on the form of the solutions, we succeed to find several exact solutions for a higher-order nonlinear Schroetinger equation derived from one important model in the study of atmospheric and ocean dynamical systems. Our analytical solutions include bright and dark solitary waves, and periodical solutions, which can be used to explain atmospheric phenomena.
文摘A pressure dependent Schrodinger equation is used to find the conditions that lead to superconductivity. When no pressure is exerted, the superconductor resistance vanishes beyond a critical temperature related to the repulsive force potential of the electron gass, where one assuming the electron total energy to be thermal, where applying mechanical pressure destroys Sc when it exceeds a certain critical value. However when the electron total energy is an assumed to be that of the free electron model and that the pressure is thermal and mechanical, the situation is different. The quantum expression for resistance shows that the increase of mechanical pressure increases the critical temperature. Such phenomenon is observed in high temperature cupper group.
基金The authors were supported by NSFC(12126409,12026407,11831004)the J.Zheng was also supported by Beijing Natural Science Foundation(1222019)。
文摘In this paper,we study the Cauchy problem for the nonlinear Schrodinger equations with Coulomb potential i■_(t)u+△u+k/|x|u=λ/|u|^(p-l)u with 1<p≤5 on R^(3).Our results reveal the influence of the long range potential K|x|^(-1)on the existence and scattering theories for nonlinear Schrodinger equations.In particular,we prove the global existence when the Coulomb potential is attractive,i.e.,when K>0,and the scattering theory when the Coulomb potential is repulsive,i.e.,when K≤O.The argument is based on the newlyestablished interaction Morawetz-type inequalities and the equivalence of Sobolev norms for the Laplacian operator with the Coulomb potential.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11874324 and 11705164)the Natural Science Foundation of Zhejiang Province of China(Grant Nos.LY17A040011,LY17F050011,and LR20A050001)+1 种基金the Foundation of “New Century 151 Talent Engineering” of Zhejiang Province of Chinathe Youth Talent Program of Zhejiang A&F University
文摘The three-coupling modified nonlinear Schr?dinger(MNLS) equation with variable-coefficients is used to describe the dynamics of soliton in alpha helical protein. This MNLS equation with variable-coefficients is firstly transformed to the MNLS equation with constant-coefficients by similarity transformation. And then the one-soliton and two-soliton solutions of the variable-coefficient-MNLS equation are obtained by solving the constant-coefficient-MNLS equation with Hirota method. The effects of different parameter conditions on the soliton solutions are discussed in detail. The interaction between two solitons is also discussed. Our results are helpful to understand the soliton dynamics in alpha helical protein.
文摘A chain of novel higher order rational solutions with some parameters and interaction solutions of a(2+1)-dimensional reverse space–time nonlocal Schrodinger(NLS)equation was derived by a generalized Darboux transformation(DT)which is derived by Taylor expansion and determinants.We obtained a series of higher-order rational solutions by one spectral parameter and we could get the periodic wave solution and three kinds of interaction solutions,singular breather and periodic wave interaction solution,singular breather and traveling wave interaction solution,bimodal breather and periodic wave interaction solution by two spectral parameters.We found a general formula for these solutions in the form of determinants.We also analyzed the complex wave structures of the dynamic behaviors and the effects of special parameters and presented exact solutions for the(2+1)-dimensional reverse space–time nonlocal NLS equation.
基金National Natural Science Foundation of China(Grant No.11705108).
文摘Based on the generalized coupled nonlinear Schr¨odinger equation,we obtain the analytic four-bright–bright soliton solution by using the Hirota bilinear method.The interactions among four solitons are also studied in detail.The results show that the interaction among four solitons mainly depends on the values of solution parameters;k1 and k2 mainly affect the two inboard solitons while k3 and k4 mainly affect the two outboard solitons;the pulse velocity and width mainly depend on the imaginary part of ki(i=1,2,3,4),while the pulse amplitude mainly depends on the real part of ki(i=1,2,3,4).
基金Project supported by the National Natural Science Foundation of China(Grant No.11771151)the Guangdong Natural Science Foundation of China(Grant No.2017A030313008)+1 种基金the Guangzhou Science and Technology Program of China(Grant No.201904010362)the Fundamental Research Funds for the Central Universities of China(Grant No.2019MS110)
文摘We exhibit some new dark soliton phenomena on the general nonzero background for a defocusing three-component nonlinear Schrodinger equation. As the plane wave background undergoes unitary transformation SU(3), we obtain the general nonzero background and study its modulational instability by the linear stability analysis. On the basis of this background, we study the dynamics of one-dark soliton and two-dark-soliton phenomena, which are different from the dark solitons studied before. Furthermore, we use the numerical method for checking the stability of the one-dark-soliton solution. These results further enrich the content in nonlinear Schrodinger systems, and require more in-depth studies in the future.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11271211,11275072 and 11435005the Ningbo Natural Science Foundation under Grant No 2015A610159+1 种基金the Opening Project of Zhejiang Provincial Top Key Discipline of Physics Sciences in Ningbo University under Grant No xkzw11502the K.C.Wong Magna Fund in Ningbo University
文摘The (2+1)-dimension nonlocal nonlinear Schrödinger (NLS) equation with the self-induced parity-time symmetric potential is introduced, which provides spatially two-dimensional analogues of the nonlocal NLS equation introduced by Ablowitz et al. [Phys. Rev. Lett. 110 (2013) 064105]. General periodic solutions are derived by the bilinear method. These periodic solutions behave as growing and decaying periodic line waves arising from the constant background and decaying back to the constant background again. By taking long wave limits of the obtained periodic solutions, rogue waves are obtained. It is also shown that these line rogue waves arise from the constant background with a line profile and disappear into the constant background again in the plane.
文摘We look at the Vuilli (1999) write up of a generalized Schrodinger equation with its Ricci scalar inclusion, in curved space-time. This has a simplified version in Pre-Planckian regime, which leads to comparing a resultant admissible wave function with Bohmian reformulations of quantum physics. As was done earlier, we compare this result with a formulation of a modified “Poisson” equation from Poissons and Will from 2014, and then use inflaton physics. The resulting inflaton is then compared to the wave functional in the first part of this document.
文摘The paper presents a method of numerical solution of the Schrodinger equation, which combines the finite-difference and Monte-Carlo approaches. The resulting method was effective and economical and, to a certain extent, not improved, <em>i</em>.<em>e</em>. optimal. The method itself is formalized as an algorithm for the numerical solution of the Schrodinger equation for a molecule with an arbitrary number of quantum particles. The method is presented and simultaneously illustrated by examples of solving the one-dimensional and multidimensional Schrodinger equation in such problems: linear one-dimensional oscillator, hydrogen atom, ion and hydrogen molecule, water, benzene and metallic hydrogen.
文摘The Finite-Difference Time-Domain (FDTD) method is a well-known technique for the analysis of quantum devices. It solves a discretized Schrodinger equation in an iterative process. However, the method provides only a second-order accurate numerical solution and requires that the spatial grid size and time step should satisfy a very restricted condition in order to prevent the numerical solution from diverging. In this article, we present a generalized FDTD method with absorbing boundary condition for solving the one-dimensional (1D) time-dependent Schr?dinger equation and obtain a more relaxed condition for stability. The generalized FDTD scheme is tested by simulating a particle moving in free space and then hitting an energy potential. Numerical results coincide with those obtained based on the theoretical analysis.
基金supported by the Natural Science Foundation of Liaoning Province,China(Grant No.201602678).
文摘The Darboux transformation (DT) method is studied in a lot of local equations, but there are few of work to solve nonlocal equations by DT. In this letter, we solve the nonlocal nonlinear Schrödinger equation (NNLSE) with the self-induced PT-symmetric potential by DT. Then the N-fold DT of NNLSE is derived with the help of the gauge transformation between the Lax pairs. Then we derive some novel exact solutions including the bright soliton, breather wave soliton. In particularly, the dynamic features of one-soliton, two-soliton, three-soliton solutions and the elastic interactions between the two solitons are displayed.
基金The authors gratefully acknowledge Qassim University,represented by the Deanship of Scienti c Research,on the material support for this research under the number(1671-ALRASSCAC-2016-1-12-S)during the academic year 1437 AH/2016 AD.
文摘The study of physical systems endowed with a position-dependent mass (PDM) remains a fundamental issue of quantum mechanics. In this paper we use a new approach, recently developed by us for building the quantum kinetic energy operator (KEO) within the Schrodinger equation, in order to construct a new class of exactly solvable models with a position varying mass, presenting a harmonic-oscillator-like spectrum. To do so we utilize the formalism of supersymmetric quantum mechanics (SUSY QM) along with the shape invariance condition. Recent outcomes of non-Hermitian quantum mechanics are also taken into account.
文摘A new scale transformation method is used in solving the Schrodinger equation. With it, the uniform grids in the discretization in conventional metho d are changed into non-uniform grids. Consequently, in some cases, the computing quantity will be greatly reduced at keeping the required accuracy. The calcul ation of the quantized inversion layer in MOS structure is used to demonstrate t he efficiency of the new method.