In this paper, we show that some functions related to the dual Simpson’s formula and Bullen- Simpson’s formula are Schur-convex provided that f is four-convex. These results should be compared to that of Simpson’s ...In this paper, we show that some functions related to the dual Simpson’s formula and Bullen- Simpson’s formula are Schur-convex provided that f is four-convex. These results should be compared to that of Simpson’s formula in Applied Math. Lett. (24) (2011), 1565-1568.展开更多
We prove that the Gini mean values S(a,b; x,y) are Schur harmonic convex with respect to (x,y)∈(0,∞)×(0,∞) if and only if (a, b) ∈{(a, b):a≥0,a ≥ b,a+b+1≥0}∪{(a,b):b≥0,b≥a,a+b+1≥0} ...We prove that the Gini mean values S(a,b; x,y) are Schur harmonic convex with respect to (x,y)∈(0,∞)×(0,∞) if and only if (a, b) ∈{(a, b):a≥0,a ≥ b,a+b+1≥0}∪{(a,b):b≥0,b≥a,a+b+1≥0} and Schur harmonic concave with respect to (x,y) ∈ (0,∞)×(0,∞) if and only if (a,b)∈{(a,b):a≤0,b≤0,a|b|1≤0}.展开更多
respectively, where r = 1, 2, … , n, and il, i2, … , is are positive integers. In this paper, the Schur convexity of Fn(X, r) and Gn(x, r) are discussed. As applications, by a bijective transformation of indepen...respectively, where r = 1, 2, … , n, and il, i2, … , is are positive integers. In this paper, the Schur convexity of Fn(X, r) and Gn(x, r) are discussed. As applications, by a bijective transformation of independent variable for a Schur convex function, the authors obtain Schur convexity for some other symmetric functions, which subsumes the main results in recent literature; and by use of the theory of majorization establish some inequalities. In particular, the authors derive from the results of this paper the Weierstrass inequalities and the Ky Fan's inequality, and give a generalization of Safta's conjecture in the n-dimensional space and others.展开更多
In this article, we prove that the symmetric function Fn(x,r)=∑i1+i2+……in=r(x1(i1x2^i2……xn^in)1/r is Schur harmonic convex for x ∈ R+n and r ∈N -=(1, 2, 3,...} As its applications, some analytic inequa...In this article, we prove that the symmetric function Fn(x,r)=∑i1+i2+……in=r(x1(i1x2^i2……xn^in)1/r is Schur harmonic convex for x ∈ R+n and r ∈N -=(1, 2, 3,...} As its applications, some analytic inequalities are established.展开更多
The Schur convexity or concavity problem of the Gini mean values S(a, b; x, y) with respect to (x, y) ∈ (0, ∞) × (0, ∞) for fixed (a, b) ∈ ? × ? is still open. In this paper, we prove that S(a, b; x, y) ...The Schur convexity or concavity problem of the Gini mean values S(a, b; x, y) with respect to (x, y) ∈ (0, ∞) × (0, ∞) for fixed (a, b) ∈ ? × ? is still open. In this paper, we prove that S(a, b; x, y) is Schur convex with respect to (x, y) ∈ (0, ∞) × (0, ∞) if and only if (a, b) ∈ {(a, b): a ? 0, b ? 0, a + b ? 1}, and Schur concave with respect to (x, y) ∈ (0, ∞) × (0, ∞) if and only if (a, b) ∈ {(a, b): b ? 0, b ? a, a + b ? 1} ∩ {(a, b): a ? 0, a ? b, a + b ? 1}.展开更多
Schur convexity, Schur geometrical convexity and Schur harmonic convexityof a class of symmetric functions are investigated. As consequences some knowninequalities are generalized. In addition, a class of geometric in...Schur convexity, Schur geometrical convexity and Schur harmonic convexityof a class of symmetric functions are investigated. As consequences some knowninequalities are generalized. In addition, a class of geometric inequalities involvingn-dimensional simplex in n-dimensional Euclidean space En and several matrix inequalitiesare established to show the applications of our results.展开更多
In this paper,by making use of Divergence theorem for multiple integrals,we establish some integral inequalities for Schur convex functions defined on bodies B⊂R^(n)that are symmetric,convex and have nonempty interior...In this paper,by making use of Divergence theorem for multiple integrals,we establish some integral inequalities for Schur convex functions defined on bodies B⊂R^(n)that are symmetric,convex and have nonempty interiors.Examples for three dimensional balls are also provided.展开更多
文摘In this paper, we show that some functions related to the dual Simpson’s formula and Bullen- Simpson’s formula are Schur-convex provided that f is four-convex. These results should be compared to that of Simpson’s formula in Applied Math. Lett. (24) (2011), 1565-1568.
基金Supported by the NSFC (11071069)the NSF of Zhejiang Province (D7080080 and Y7080185)the Innovation Team Foundation of the Department of Education of Zhejiang Province (T200924)
文摘We prove that the Gini mean values S(a,b; x,y) are Schur harmonic convex with respect to (x,y)∈(0,∞)×(0,∞) if and only if (a, b) ∈{(a, b):a≥0,a ≥ b,a+b+1≥0}∪{(a,b):b≥0,b≥a,a+b+1≥0} and Schur harmonic concave with respect to (x,y) ∈ (0,∞)×(0,∞) if and only if (a,b)∈{(a,b):a≤0,b≤0,a|b|1≤0}.
基金supported by the National Natural Science Foundation of China(Nos.11271118,10871061,11301172)the Nature Science Foundation of Hunan Province(No.12JJ3002)+1 种基金the Scientific Research Fund of Hunan Provincial Education Department(No.11A043)the Construct Program of the Key Discipline in Hunan Province
文摘respectively, where r = 1, 2, … , n, and il, i2, … , is are positive integers. In this paper, the Schur convexity of Fn(X, r) and Gn(x, r) are discussed. As applications, by a bijective transformation of independent variable for a Schur convex function, the authors obtain Schur convexity for some other symmetric functions, which subsumes the main results in recent literature; and by use of the theory of majorization establish some inequalities. In particular, the authors derive from the results of this paper the Weierstrass inequalities and the Ky Fan's inequality, and give a generalization of Safta's conjecture in the n-dimensional space and others.
基金supported by NSFC (60850005)NSF of Zhejiang Province(D7080080, Y7080185, Y607128)
文摘In this article, we prove that the symmetric function Fn(x,r)=∑i1+i2+……in=r(x1(i1x2^i2……xn^in)1/r is Schur harmonic convex for x ∈ R+n and r ∈N -=(1, 2, 3,...} As its applications, some analytic inequalities are established.
基金supported by National Natural Science Foundation of China (Grant Nos. 60850005, 10771195)the Natural Science Foundation of Zhejiang Province (Grant Nos. D7080080, Y607128, Y7080185)
文摘The Schur convexity or concavity problem of the Gini mean values S(a, b; x, y) with respect to (x, y) ∈ (0, ∞) × (0, ∞) for fixed (a, b) ∈ ? × ? is still open. In this paper, we prove that S(a, b; x, y) is Schur convex with respect to (x, y) ∈ (0, ∞) × (0, ∞) if and only if (a, b) ∈ {(a, b): a ? 0, b ? 0, a + b ? 1}, and Schur concave with respect to (x, y) ∈ (0, ∞) × (0, ∞) if and only if (a, b) ∈ {(a, b): b ? 0, b ? a, a + b ? 1} ∩ {(a, b): a ? 0, a ? b, a + b ? 1}.
基金The Doctoral Programs Foundation(20113401110009) of Education Ministry of Chinathe Natural Science Research Project(2012kj11) of Hefei Normal Universitythe NSF(KJ2013A220) of Anhui Province
文摘Schur convexity, Schur geometrical convexity and Schur harmonic convexityof a class of symmetric functions are investigated. As consequences some knowninequalities are generalized. In addition, a class of geometric inequalities involvingn-dimensional simplex in n-dimensional Euclidean space En and several matrix inequalitiesare established to show the applications of our results.
文摘In this paper,by making use of Divergence theorem for multiple integrals,we establish some integral inequalities for Schur convex functions defined on bodies B⊂R^(n)that are symmetric,convex and have nonempty interiors.Examples for three dimensional balls are also provided.