In this paper,the two level additive Schwarz algorithm of mixed finite element.dts-cretization of Inharmonic problem is presented,the rate of convergenece is obtained.Moreover,the two level multiplicative Schwarz algo...In this paper,the two level additive Schwarz algorithm of mixed finite element.dts-cretization of Inharmonic problem is presented,the rate of convergenece is obtained.Moreover,the two level multiplicative Schwarz algorithm is considered.展开更多
In this paper the Schwarz alternating method for a fourth-order elliptic variational inequality problem is considered by way of the equivalent form, and the geometric convergence is obtained on two subdomains.
Schwarz methods are an important type of domain decomposition methods. Using the Fourier transform, we derive error propagation matrices and their spectral radii of the classical Schwarz alternating method and the add...Schwarz methods are an important type of domain decomposition methods. Using the Fourier transform, we derive error propagation matrices and their spectral radii of the classical Schwarz alternating method and the additive Schwarz method for the biharmonic equation in this paper. We prove the convergence of the Schwarz methods from a new point of view, and provide detailed information about the convergence speeds and their dependence on the overlapping size of subdomains. The obtained results are independent of any unknown constant and discretization method, showing that the Schwarz alternating method converges twice as quickly as the additive Schwarz method.展开更多
This paper investigates superconvergence properties of the direct discontinuous Galerkin(DDG)method with interface corrections and the symmetric DDG method for diffusion equations.We apply the Fourier analysis techniq...This paper investigates superconvergence properties of the direct discontinuous Galerkin(DDG)method with interface corrections and the symmetric DDG method for diffusion equations.We apply the Fourier analysis technique to symbolically compute eigenvalues and eigenvectors of the amplification matrices for both DDG methods with different coefficient settings in the numerical fluxes.Based on the eigen-structure analysis,we carry out error estimates of the DDG solutions,which can be decomposed into three parts:(i)dissipation errors of the physically relevant eigenvalue,which grow linearly with the time and are of order 2k for P^(k)(k=2,3)approximations;(ii)projection error from a special projection of the exact solution,which is decreasing over the time and is related to the eigenvector corresponding to the physically relevant eigenvalue;(iii)dissipative errors of non-physically relevant eigenvalues,which decay exponentially with respect to the spatial mesh sizeΔx.We observe that the errors are sensitive to the choice of the numerical flux coefficient for even degree P^(2)approximations,but are not for odd degree P^(3)approximations.Numerical experiments are provided to verify the theoretical results.展开更多
Conical origami structures are characterized by their substantial out-of-plane stiffness and energy-absorptioncapacity.Previous investigations have commonly focused on the static characteristics of these lightweight s...Conical origami structures are characterized by their substantial out-of-plane stiffness and energy-absorptioncapacity.Previous investigations have commonly focused on the static characteristics of these lightweight struc-tures.However,the efficient analysis of the natural vibrations of these structures is pivotal for designing conicalorigami structures with programmable stiffness and mass.In this paper,we propose a novel method to analyzethe natural vibrations of such structures by combining a symmetric substructuring method(SSM)and a gener-alized eigenvalue analysis.SSM exploits the inherent symmetry of the structure to decompose it into a finiteset of repetitive substructures.In doing so,we reduce the dimensions of matrices and improve computationalefficiency by adopting the stiffness and mass matrices of the substructures in the generalized eigenvalue analysis.Finite element simulations of pin-jointed models are used to validate the computational results of the proposedapproach.Moreover,the parametric analysis of the structures demonstrates the influences of the number of seg-ments along the circumference and the radius of the cone on the structural mass and natural frequencies of thestructures.Furthermore,we present a comparison between six-fold and four-fold conical origami structures anddiscuss the influence of various geometric parameters on their natural frequencies.This study provides a strategyfor efficiently analyzing the natural vibration of symmetric origami structures and has the potential to contributeto the efficient design and customization of origami metastructures with programmable stiffness.展开更多
This paper investigates the effects of charge parameters of the underwater contact explosion based on the axisymmetric smoothed particle hydrodynamics (SPH) method. The dynamic boundary particle is proposed to impro...This paper investigates the effects of charge parameters of the underwater contact explosion based on the axisymmetric smoothed particle hydrodynamics (SPH) method. The dynamic boundary particle is proposed to improve the pressure fluctuation and numerical accuracy near the symmetric axis. An in-depth study is carried out over the influence of charge shapes and detonation modes on the near-field loads in terms of the peak pressure and impulse of shock waves. For different charge shapes, the cylindrical charge with different length-diameter ratios may cause strong directivity of peak pressure and impulse in the near field. Compared with spherical charge, the peak pressure of cylindrical charge may be either weakened or enhanced in different directions. Within a certain range, the greater the length-diameter ratio is, the more obvious the effect will be. The weakened ratio near the detonation end may reach 25% approximately, while the enhanced ratio may reach around 20% in the opposite direction. However, the impulse in different directions seems to be uniform. For different detonation modes, compared with point-source explosion, the peak pressure of plane-source explosion is enhanced by about 5%. Besides, the impulse of plane-source explosion is enhanced by around 5% near the detonation end, but close to those of the point-source explosion in other directions. Based on the material constitutive relation in the axisymmetric coordinates, a simple case of underwater contact explosion is simulated to verify the above conclusions, showing that the charge parameters of underwater contact explosion should not be ignored.展开更多
基金The research was supported by the Doctoral Point Foundation of China Universities and by State Major Key Project for Basic Research of China.
文摘In this paper,the two level additive Schwarz algorithm of mixed finite element.dts-cretization of Inharmonic problem is presented,the rate of convergenece is obtained.Moreover,the two level multiplicative Schwarz algorithm is considered.
文摘In this paper the Schwarz alternating method for a fourth-order elliptic variational inequality problem is considered by way of the equivalent form, and the geometric convergence is obtained on two subdomains.
基金supported by the National Natural Science Foundation of China (No. 10671154)the Na-tional Basic Research Program (No. 2005CB321703)the Science and Technology Foundation of Guizhou Province of China (No. [2008]2123)
文摘Schwarz methods are an important type of domain decomposition methods. Using the Fourier transform, we derive error propagation matrices and their spectral radii of the classical Schwarz alternating method and the additive Schwarz method for the biharmonic equation in this paper. We prove the convergence of the Schwarz methods from a new point of view, and provide detailed information about the convergence speeds and their dependence on the overlapping size of subdomains. The obtained results are independent of any unknown constant and discretization method, showing that the Schwarz alternating method converges twice as quickly as the additive Schwarz method.
基金supported by the National Natural Science Foundation of China(Grant Nos.11871428 and 12071214)the Natural Science Foundation for Colleges and Universities of Jiangsu Province of China(Grant No.20KJB110011)+1 种基金supported by the National Science Foundation(Grant No.DMS-1620335)and the Simons Foundation(Grant No.637716)supported by the National Natural Science Foundation of China(Grant Nos.11871428 and 12272347).
文摘This paper investigates superconvergence properties of the direct discontinuous Galerkin(DDG)method with interface corrections and the symmetric DDG method for diffusion equations.We apply the Fourier analysis technique to symbolically compute eigenvalues and eigenvectors of the amplification matrices for both DDG methods with different coefficient settings in the numerical fluxes.Based on the eigen-structure analysis,we carry out error estimates of the DDG solutions,which can be decomposed into three parts:(i)dissipation errors of the physically relevant eigenvalue,which grow linearly with the time and are of order 2k for P^(k)(k=2,3)approximations;(ii)projection error from a special projection of the exact solution,which is decreasing over the time and is related to the eigenvector corresponding to the physically relevant eigenvalue;(iii)dissipative errors of non-physically relevant eigenvalues,which decay exponentially with respect to the spatial mesh sizeΔx.We observe that the errors are sensitive to the choice of the numerical flux coefficient for even degree P^(2)approximations,but are not for odd degree P^(3)approximations.Numerical experiments are provided to verify the theoretical results.
基金supported by the National Natural Science Foundation of China(Grants Nos.51978150 and 52050410334)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grants No.SJCX23_0069)the Fundamental Research Funds for the Central Universities.
文摘Conical origami structures are characterized by their substantial out-of-plane stiffness and energy-absorptioncapacity.Previous investigations have commonly focused on the static characteristics of these lightweight struc-tures.However,the efficient analysis of the natural vibrations of these structures is pivotal for designing conicalorigami structures with programmable stiffness and mass.In this paper,we propose a novel method to analyzethe natural vibrations of such structures by combining a symmetric substructuring method(SSM)and a gener-alized eigenvalue analysis.SSM exploits the inherent symmetry of the structure to decompose it into a finiteset of repetitive substructures.In doing so,we reduce the dimensions of matrices and improve computationalefficiency by adopting the stiffness and mass matrices of the substructures in the generalized eigenvalue analysis.Finite element simulations of pin-jointed models are used to validate the computational results of the proposedapproach.Moreover,the parametric analysis of the structures demonstrates the influences of the number of seg-ments along the circumference and the radius of the cone on the structural mass and natural frequencies of thestructures.Furthermore,we present a comparison between six-fold and four-fold conical origami structures anddiscuss the influence of various geometric parameters on their natural frequencies.This study provides a strategyfor efficiently analyzing the natural vibration of symmetric origami structures and has the potential to contributeto the efficient design and customization of origami metastructures with programmable stiffness.
基金supported by the National Natural Science Foundation of China(No.51379039)the Excellent Young Scientists Fund(No.51222904)
文摘This paper investigates the effects of charge parameters of the underwater contact explosion based on the axisymmetric smoothed particle hydrodynamics (SPH) method. The dynamic boundary particle is proposed to improve the pressure fluctuation and numerical accuracy near the symmetric axis. An in-depth study is carried out over the influence of charge shapes and detonation modes on the near-field loads in terms of the peak pressure and impulse of shock waves. For different charge shapes, the cylindrical charge with different length-diameter ratios may cause strong directivity of peak pressure and impulse in the near field. Compared with spherical charge, the peak pressure of cylindrical charge may be either weakened or enhanced in different directions. Within a certain range, the greater the length-diameter ratio is, the more obvious the effect will be. The weakened ratio near the detonation end may reach 25% approximately, while the enhanced ratio may reach around 20% in the opposite direction. However, the impulse in different directions seems to be uniform. For different detonation modes, compared with point-source explosion, the peak pressure of plane-source explosion is enhanced by about 5%. Besides, the impulse of plane-source explosion is enhanced by around 5% near the detonation end, but close to those of the point-source explosion in other directions. Based on the material constitutive relation in the axisymmetric coordinates, a simple case of underwater contact explosion is simulated to verify the above conclusions, showing that the charge parameters of underwater contact explosion should not be ignored.