期刊文献+
共找到2,358篇文章
< 1 2 118 >
每页显示 20 50 100
Neutrophil peptide 1 accelerates the clearance of degenerative axons during Wallerian degeneration by activating macrophages after peripheral nerve crush injury
1
作者 Yuhui Kou Yusong Yuan +3 位作者 Qicheng Li Wenyong Xie Hailin Xu Na Han 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1822-1827,共6页
Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide ... Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide closely involved in peripheral nerve regeneration.However,the mechanism by which neutrophil peptide 1 enhances nerve regeneration remains unclear.This study was designed to investigate the relationship between neutrophil peptide 1 and macrophages in vivo and in vitro in peripheral nerve crush injury.The functions of RAW 264.7 cells we re elucidated by Cell Counting Kit-8 assay,flow cytometry,migration assays,phagocytosis assays,immunohistochemistry and enzyme-linked immunosorbent assay.Axonal debris phagocytosis was observed using the CUBIC(Clear,Unobstructed Brain/Body Imaging Cocktails and Computational analysis)optical clearing technique during Wallerian degeneration.Macrophage inflammatory factor expression in different polarization states was detected using a protein chip.The results showed that neutrophil peptide 1 promoted the prolife ration,migration and phagocytosis of macrophages,and CD206 expression on the surfa ce of macrophages,indicating M2 polarization.The axonal debris clearance rate during Wallerian degeneration was enhanced after neutrophil peptide 1 intervention.Neutrophil peptide 1 also downregulated inflammatory factors interleukin-1α,-6,-12,and tumor necrosis factor-αin invo and in vitro.Thus,the results suggest that neutrophil peptide 1 activates macrophages and accelerates Wallerian degeneration,which may be one mechanism by which neutrophil peptide 1 enhances peripheral nerve regeneration. 展开更多
关键词 axonal debris inflammatory factors MACROPHAGES neutrophil peptide 1 peripheral nerve injury peripheral nerve regeneration RAW 264.7 cells sciatic nerve Wallerian degeneration
下载PDF
Concomitant treatment of ureteral calculi and ipsilateral pelvic sciatic nerve schwannoma with transperitoneal laparoscopic approach: A case report
2
作者 Yang Xiong Jin Li Han-Jie Yang 《World Journal of Clinical Cases》 SCIE 2024年第11期1947-1953,共7页
BACKGROUND Schwannomas are rare peripheral neural myelin sheath tumors that originate from Schwann cells.Of the different types of schwannomas,pelvic sciatic nerve schwannoma is extremely rare.Definite preoperative di... BACKGROUND Schwannomas are rare peripheral neural myelin sheath tumors that originate from Schwann cells.Of the different types of schwannomas,pelvic sciatic nerve schwannoma is extremely rare.Definite preoperative diagnosis of pelvic schwannomas is difficult,and surgical resection is the gold standard for its definite diagnosis and treatment.CASE SUMMARY We present a case of pelvic schwannoma arising from the sciatic nerve that was detected in a 40-year-old man who underwent computed tomography for intermittent right lower back pain caused exclusively by a right ureteral calculus.Subsequently,successful transperitoneal laparoscopic surgery was performed for the intact removal of the stone and en bloc resection of the schwannoma.The total operative time was 125 min,and the estimated blood loss was inconspicuous.The surgical procedure was uneventful.The patient was discharged on postoperative day 5 with the simultaneous removal of the urinary catheter.However,the patient presented with motor and sensory disorders of the right lower limb,caused by partial damage to the right sciatic nerve.No tumor recurrence was observed at the postoperative appointment.CONCLUSION Histopathological examination of the specimen confirmed the diagnosis of a schwannoma.Thus,laparoscopic surgery is safe and feasible for concomitant extirpation of pelvic schwannomas and other pelvic and abdominal diseases that require surgical treatment. 展开更多
关键词 SCHWANNOMA sciatic nerve Laparoscopy Ureteral calculi Pelvic neoplasms Case report
下载PDF
A hyaluronic acid granular hydrogel nerve guidance conduit promotes regeneration and functional recovery of injured sciatic nerves in rats 被引量:2
3
作者 Jie Yang Chia-Chen Hsu +3 位作者 Ting-Ting Cao Hua Ye Jing Chen Yun-Qing Li 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期657-663,共7页
A hyaluronic acid granular hydrogel can promote neuronal and astrocyte colony formation and axonal extension in vitro,suggesting that the hydrogel can simulate an extracellular matrix structure to promote neural regen... A hyaluronic acid granular hydrogel can promote neuronal and astrocyte colony formation and axonal extension in vitro,suggesting that the hydrogel can simulate an extracellular matrix structure to promote neural regeneration.However,in vivo experiments have not been conducted.In this study,we transplanted a hyaluronic acid granular hydrogel nerve guidance conduit to repair a 10-mm long sciatic nerve gap.The Basso,Beattie,and Bresnahan locomotor rating scale,sciatic nerve compound muscle action potential recording,Fluoro-Gold retrograde tracing,growth related protein 43/S100 immunofluorescence staining,transmission electron microscopy,gastrocnemius muscle dry/wet weight ratio,and Masson’s trichrome staining results showed that the nerve guidance conduit exhibited similar regeneration of sciatic nerve axons and myelin sheath,and recovery of the electrophysiological function and motor function as autologous nerve transplantation.The conduit results were superior to those of a bulk hydrogel or silicone tube transplant.These findings suggest that tissue-engineered nerve conduits containing hyaluronic acid granular hydrogels effectively promote the morphological and functional recovery of the injured sciatic nerve.The nerve conduits have the potential as a material for repairing peripheral nerve defects. 展开更多
关键词 functional recovery granular hydrogel hyaluronic acid myelin sheath nerve conduit nerve regeneration peripheral nerve regeneration sciatic nerve injury tissue engineering transection injury
下载PDF
Platelet-rich plasma promotes peripheral nerve regeneration after sciatic nerve injury 被引量:1
4
作者 Su-Long Wang Xi-Lin Liu +1 位作者 Zhi-Chen Kang Yue-Shu Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第2期375-381,共7页
The effect of platelet-rich plasma on nerve regeneration remains controversial.In this study,we established a rabbit model of sciatic nerve small-gap defects with preserved epineurium and then filled the gaps with pla... The effect of platelet-rich plasma on nerve regeneration remains controversial.In this study,we established a rabbit model of sciatic nerve small-gap defects with preserved epineurium and then filled the gaps with platelet-rich plasma.Twenty-eight rabbits were divided into the following groups(7 rabbits/group):model,low-concentrati on PRP(2.5-3.5-fold concentration of whole blood platelets),medium-concentration PRP(4.5-6.5-fold concentration of whole blood platelets),and high-concentration PRP(7.5-8.5-fold concentration of whole blood platelets).Electrophysiological and histomorphometrical assessments and proteomics analysis we re used to evaluate regeneration of the sciatic nerve.Our results showed that platelet-rich plasma containing 4.5-6.5-and 7.5-8.5-fold concentrations of whole blood platelets promoted repair of sciatic nerve injury.Proteomics analysis was performed to investigate the possible mechanism by which platelet-rich plasma promoted nerve regeneration.Proteomics analysis showed that after sciatic nerve injury,platelet-rich plasma increased the expression of integrin subunitβ-8(ITGB8),which participates in angiogenesis,and differentially expressed proteins were mainly enriched in focal adhesion pathways.Additionally,two key proteins,ribosomal protein S27 a(RSP27 a)and ubiquilin 1(UBQLN1),which were selected after protein-protein interaction analysis,are involved in the regulation of ubiquitin levels in vivo.These data suggest that platelet-rich plasma promotes peripheral nerve regeneration after sciatic nerve injury by affecting angiogenesis and intracellular ubiquitin levels. 展开更多
关键词 bioinformatic analysis ITGB8 leukocyte-platelet rich plasma nerve regeneration peripheral nerve injury platelet-rich plasma proteomic analysis sciatic nerve injury
下载PDF
Comparison of the Nerve Regeneration Capacity and Characteristics between Sciatic Nerve Crush and Transection Injury Models in Rats
5
作者 WANG Bin Bin GUO Chao +6 位作者 SUN Sheng Qiao ZHANG Xing Nan LI Zhen LI Wei Jie LI De Zhi SCHUMACHER Michael LIU Song 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2023年第2期160-173,共14页
Objective To provide useful information for selecting the most appropriate peripheral nerve injury model for different research purposes in nerve injury and repair studies,and to compare nerve regeneration capacity an... Objective To provide useful information for selecting the most appropriate peripheral nerve injury model for different research purposes in nerve injury and repair studies,and to compare nerve regeneration capacity and characteristics between them.Methods Sixty adult SD rats were randomly divided into two groups and underwent crush injury alone(group A,n=30)or transection injury followed by surgical repair(group B,n=30)of the right hind paw.Each group was subjected to the CatWalk test,gastrocnemius muscle evaluation,pain threshold measurement,electrophysiological examination,retrograde neuronal labeling,and quantification of nerve regeneration before and 7,14,21,and 28 days after injury.Results Gait analysis showed that the recovery speed in group A was significantly faster than that in group B at 14 days.At 21 days,the compound muscle action potential of the gastrocnemius muscle in group A was significantly higher than that in group B,and the number of labeled motor neurons in group B was lower than that in group A.The number of new myelin sheaths and the g-ratio were higher in group A than in group B.There was a 7-day time difference in the regeneration rate between the two injury groups.Conclusion The regeneration of nerve fibers was rapid after crush nerve injury,whereas the transection injury was relatively slow,which provides some ideas for the selection of clinical research models. 展开更多
关键词 sciatic nerve injury DEGENERATION REGENERATION MYELINATION
下载PDF
Label-free quantitative proteomics analysis models in vivo and in vitro reveal key proteins and potential roles in sciatic nerve injury
6
作者 YANG GU MINGGUANG BI +2 位作者 DEHUI CHEN NING NI JIANMING CHEN 《BIOCELL》 SCIE 2023年第9期2069-2080,共12页
Background:The underlying mechanism of sciatic nerve injury(SNI)is a common motor functional disorder,necessitates further research.Methods:A rat model of SNI was established,with the injury group subjected to compres... Background:The underlying mechanism of sciatic nerve injury(SNI)is a common motor functional disorder,necessitates further research.Methods:A rat model of SNI was established,with the injury group subjected to compressive injury of the right sciatic nerve exposed at the midpoint of the thigh and the sham surgery group undergoing the same surgical procedure.An oxygen-glucose deprivation model was employed to simulate in vitro SNI in PC12 cells.Following data acquisition and quality control,differentially expressed proteins(DEPs)in each model were identified through differential analysis,and enrichment analysis was used to explore the potential functions and pathways of the DEPs.Venn diagrams were drawn,and DEPs from both in vivo and in vitro SNI models were imported into the STRING database to construct a protein-protein interaction network and screen for hub proteins.Results:After the peptide segments obtained from rat nerve blockade and PC12 cells met quality requirements,258 DEPs were identified in rat nerve samples,and 119 DEPs were screened in PC12 cells.Enrichment analysis revealed that DEPs in the rat model were predominantly concentrated in biological functions such as myogenic cell proliferation and signaling related to lipid and energy metabolism.DEPs in the in vitro model were mainly enriched in biological processes such as phagocytosis and were associated with lipid transport and metabolism.Two hub proteins,amyloid precursor protein(APP)and fibronectin 1(FN1),were identified through MCC,MCODE,and Degree scoring.Both PC12 cells and external validation sets showed relatively higher expression of APP and FN1 in injured samples.Results of gene set enrichment analysis indicated that these two proteins were associated with metabolic pathways,such as biosynthesis of glycosaminoglycan chondroitin sulfate and biosynthesis of unsaturated fatty acids.Conclusion:APP and FN1 are potential key molecules involved in SNI and are associated with various metabolic pathways in nerve repair.These findings provide a theoretical basis for the development of therapeutic targets for SNI. 展开更多
关键词 Oxygen glucose deprivation PROTEOMICS sciatic nerve injury Peripheral nerve injury
下载PDF
Chemokine platelet factor 4 accelerates peripheral nerve regeneration by regulating Schwann cell activation and axon elongation
7
作者 Miao Gu Xiao Cheng +3 位作者 Di Zhang Weiyan Wu Yi Cao Jianghong He 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期190-195,共6页
Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and foun... Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and found that expression of platelet factor 4 was markedly up-regulated after sciatic nerve injury.Platelet factor is an important molecule in cell apoptosis,diffe rentiation,survival,and proliferation.Further,polymerase chain reaction and immunohistochemical staining confirmed the change in platelet factor 4 in the sciatic nerve at different time points after injury.Enzyme-linked immunosorbent assay confirmed that platelet factor 4 was secreted by Schwann cells.We also found that silencing platelet factor 4 decreased the proliferation and migration of primary cultured Schwann cells,while exogenously applied platelet factor 4 stimulated Schwann cell prolife ration and migration and neuronal axon growth.Furthermore,knocking out platelet factor 4 inhibited the prolife ration of Schwann cells in injured rat sciatic nerve.These findings suggest that Schwann cell-secreted platelet factor 4 may facilitate peripheral nerve repair and regeneration by regulating Schwann cell activation and axon growth.Thus,platelet factor 4 may be a potential therapeutic target for traumatic peripheral nerve injury. 展开更多
关键词 axon elongation bioinformatic analysis cell migration cell proliferation dorsal root ganglia peripheral nerve regeneration peripheral nerve trauma platelet factor 4 rat sciatic nerve Schwann cells
下载PDF
Nerve growth factor-basic fibroblast growth factor poly-lactide co-glycolid sustained-release microspheres and the small gap sleeve bridging technique to repair peripheral nerve injury 被引量:1
8
作者 Ming Li Ting-Min Xu +7 位作者 Dian-Ying Zhang Xiao-Meng Zhang Feng Rao Si-Zheng Zhan Man Ma Chen Xiong Xiao-Feng Chen Yan-Hua Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第1期162-169,共8页
We previously prepared nerve growth factor poly-lactide co-glycolid sustained-release microspheres to treat rat sciatic nerve injury using the small gap sleeve technique.Multiple growth factors play a synergistic role... We previously prepared nerve growth factor poly-lactide co-glycolid sustained-release microspheres to treat rat sciatic nerve injury using the small gap sleeve technique.Multiple growth factors play a synergistic role in promoting the repair of peripheral nerve injury;as a result,in this study,we added basic fibroblast growth factors to the microspheres to further promote nerve regeneration.First,in an in vitro biomimetic microenvironment,we developed and used a drug screening biomimetic microfluidic chip to screen the optimal combination of nerve growth factor/basic fibroblast growth factor to promote the regeneration of Schwann cells.We found that 22.56 ng/mL nerve growth factor combined with 4.29 ng/mL basic fibroblast growth factor exhibited optimal effects on the proliferation of primary rat Schwann cells.The successfully prepared nerve growth factor-basic fibroblast growth factor-poly-lactide-co-glycolid sustained-release microspheres were used to treat rat sciatic nerve transection injury using the small gap sleeve bridge technique.Compared with epithelium sutures and small gap sleeve bridging alone,the small gap sleeve bridging technique combined with drug-free sustained-release microspheres has a stronger effect on rat sciatic nerve transfection injury repair at the structural and functional level. 展开更多
关键词 biomimetic microfluidic chip growth factor in vitro biomimetic microenvironment nerve function peripheral nerve injury sciatic nerve small gap sleeve bridging sustained-release microspheres
下载PDF
Repair and regeneration of peripheral nerve injuries that ablate branch points
9
作者 JuliAnne E.Allgood George D.Bittner Jared S.Bushman 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第12期2564-2568,共5页
The peripheral nervous system has an extensive branching organization, and peripheral nerve injuries that ablate branch points present a complex challenge for clinical repair. Ablations of linear segments of the PNS h... The peripheral nervous system has an extensive branching organization, and peripheral nerve injuries that ablate branch points present a complex challenge for clinical repair. Ablations of linear segments of the PNS have been extensively studied and routinely treated with autografts, acellular nerve allografts, conduits, wraps, and nerve transfers. In contrast, segmental-loss peripheral nerve injuries, in which one or more branch points are ablated so that there are three or more nerve endings, present additional complications that have not been rigorously studied or documented. This review discusses:(1) the branched anatomy of the peripheral nervous system,(2) case reports describing how peripheral nerve injuries with branched ablations have been surgically managed,(3) factors known to influence regeneration through branched nerve structures,(4) techniques and models of branched peripheral nerve injuries in animal models, and(5) conclusions regarding outcome measures and studies needed to improve understanding of regeneration through ablated branched structures of the peripheral nervous system. 展开更多
关键词 ALLOGRAFT animal model branched injuries femoral nerve peripheral nerve injury peripheral nervous system REGENERATION REPAIR sciatic nerve surgical repair
下载PDF
Chitosan conduits enriched with fibrin-collagen hydrogel with or without adipose-derived mesenchymal stem cells for the repair of 15-mm-long sciatic nerve defect
10
作者 Marwa El Soury óscar Darío García-García +6 位作者 Isabella Tarulli Jesús Chato-Astrain Isabelle Perroteau Stefano Geuna Stefania Raimondo Giovanna Gambarotia Víctor Carriel 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1378-1385,共8页
Hollow conduits of natural or synthetic origins have shown acceptable regeneration results in short nerve gap repair;however,results are still not comparable with the current gold standard technique“autografts”.Holl... Hollow conduits of natural or synthetic origins have shown acceptable regeneration results in short nerve gap repair;however,results are still not comparable with the current gold standard technique“autografts”.Hollow conduits do not provide a successful regeneration outcome when it comes to critical nerve gap repair.Enriching the lumen of conduits with different extracellular materials and cells could provide a better biomimicry of the natural nerve regenerating environment and is expected to ameliorate the conduit performance.In this study,we evaluated nerve regeneration in vivo using hollow chitosan conduits or conduits enriched with fibrin-collagen hydrogels alone or with the further addition of adipose-derived mesenchymal stem cells in a 15 mm rat sciatic nerve transection model.Unexpected changes in the hydrogel consistency and structural stability in vivo led to a failure of nerve regeneration after 15 weeks.Nevertheless,the molecular assessment in the early regeneration phase(7,14,and 28 days)has shown an upregulation of useful regenerative genes in hydrogel enriched conduits compared with the hollow ones.Hydrogels composed of fibrin-collagen were able to upregulate the expression of soluble NRG1,a growth factor that plays an important role in Schwann cell transdifferentiation.The further enrichment with adipose-derived mesenchymal stem cells has led to the upregulation of other important genes such as ErbB2,VEGF-A,BDNF,c-Jun,and ATF3. 展开更多
关键词 adipose-derived stem cells chitosan conduit fibrin and collagen hydrogel nerve regeneration nerve repair neuregulin 1 peripheral nerve sciatic nerve
下载PDF
Long noncoding RNA H19 regulates degeneration and regeneration of injured peripheral nerves
11
作者 Yu-Mei Feng Jian Shao +6 位作者 Min Cai Yi-Yue Zhou Yi Yao Jia-Xi Qian Zi-Han Ding Mao-Rong Jiang Deng-Bing Yao 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1847-1851,共5页
Our previous studies have shown that long noncoding RNA(lncRNA)H19 is upregulated in injured rat sciatic nerve during the process of Wallerian degeneration,and that it promotes the migration of Schwann cells and slows... Our previous studies have shown that long noncoding RNA(lncRNA)H19 is upregulated in injured rat sciatic nerve during the process of Wallerian degeneration,and that it promotes the migration of Schwann cells and slows down the growth of dorsal root ganglion axons.However,the mechanism by which lncRNA H19 regulates neural repair and regeneration after peripheral nerve injury remains unclear.In this study,we established a Sprague-Dawley rat model of sciatic nerve transection injury.We performed in situ hybridization and found that at 4–7 days after sciatic nerve injury,lncRNA H19 was highly expressed.At 14 days before injury,adeno-associated virus was intrathecally injected into the L4–L5 foramina to disrupt or overexpress lncRNA H19.After overexpression of lncRNA H19,the growth of newly formed axons from the sciatic nerve was inhibited,whereas myelination was enhanced.Then,we performed gait analysis and thermal pain analysis to evaluate rat behavior.We found that lncRNA H19 overexpression delayed the recovery of rat behavior function,whereas interfering with lncRNA H19 expression improved functional recovery.Finally,we examined the expression of lncRNA H19 downstream target SEMA6D,and found that after lncRNA H19 overexpression,the SEMA6D protein level was increased.These findings suggest that lncRNA H19 regulates peripheral nerve degeneration and regeneration through activating SEMA6D in injured nerves.This provides a new clue to understand the role of lncRNA H19 in peripheral nerve degeneration and regeneration. 展开更多
关键词 adeno-associated virus dorsal root ganglion lncRNA H19 nerve degeneration nerve regeneration peripheral nerve rat sciatic nerve injury semaphorin 6D Wallerian degeneration
下载PDF
Charcot-Marie-Tooth-1A and sciatic nerve crush rat models:insights from proteomics
12
作者 Zeina Msheik Stephanie Durand +5 位作者 Emilie Pinault Martial Caillaud Laetitia Vignaud Fabrice Billet Mohamed El Massry Alexis Desmoulière 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1354-1363,共10页
The sensorimotor and histological aspects of peripheral neuropathies were already studied by our team in two rat models:the sciatic nerve crush and the Charcot-Marie-Tooth-1A disease.In this study,we sought to highlig... The sensorimotor and histological aspects of peripheral neuropathies were already studied by our team in two rat models:the sciatic nerve crush and the Charcot-Marie-Tooth-1A disease.In this study,we sought to highlight and compare the protein signature of these two pathological situations.Indeed,the identification of protein profiles in diseases can play an important role in the development of pharmacological targets.In fact,Charcot-Marie-Tooth-1A rats develop motor impairments that are more severe in the hind limbs.Therefore,for the first time,protein expression in sciatic nerve of Charcot-Marie-Tooth-1A rats was examined.First,distal sciatic nerves were collected from Charcot-Marie-Tooth-1A and uninjured wild-type rats aged 3 months.After protein extraction,sequential window acquisition of all theoretical fragment ion spectra liquid chromatography and mass spectrometry was employed.445 proteins mapped to Swiss-Prot or trEMBL Uniprot databases were identified and quantified.Of these,153 proteins showed statistically significant differences between Charcot-Marie-Tooth-1A and wild-type groups.The majority of these proteins were overexpressed in Charcot-Marie-Tooth-1A.Hierarchical clustering and functional enrichment using Gene Ontology were used to group these proteins based on their biological effects concerning Charcot-Marie-Tooth-1A pathophysiology.Second,proteomic characterization of wild-type rats subjected to sciatic nerve crush was performed sequential window acquisition of all theoretical fragment ion spectra liquid chromatography and mass spectrometry.One month after injury,distal sciatic nerves were collected and analyzed as described above.Out of 459 identified proteins,92 showed significant differences between sciatic nerve crush and the uninjured wild-type rats used in the first study.The results suggest that young adult Charcot-Marie-Tooth-1A rats(3 months old)develop compensatory mechanisms at the level of redox balance,protein folding,myelination,and axonogenesis.These mechanisms seem insufficient to hurdle the progress of the disease.Notably,response to oxidative stress appears to be a significant feature of Charcot-Marie-Tooth-1A,potentially playing a role in the pathological process.In contrast to the first experiment,the majority of the proteins that differed from wild-type were downregulated in the sciatic nerve crush group.Functional enrichment suggested that neurogenesis,response to axon injury,and oxidative stress were important biological processes.Protein analysis revealed an imperfect repair at this time point after injury and identified several distinguishable proteins.In conclusion,we suggest that peripheral neuropathies,whether of a genetic or traumatic cause,share some common pathological pathways.This study may provide directions for better characterization of these models and/or identifying new specific therapeutic targets. 展开更多
关键词 Charcot-Marie-Tooth-1A endoplasmic reticulum Gene Ontology NEUROGENESIS oxidative stress PROTEOMICS rat repair sciatic nerve crush SWATH-MS
下载PDF
Electroacupuncture and moxibustion promote regeneration of injured sciatic nerve through Schwann cell proliferation and nerve growth factor secretion 被引量:24
13
作者 Lin-na Hu Jin-xin Tian +7 位作者 Wei Gao Jing Zhu Fang-fang Mou Xiao-chun Ye Yu-pu Liu Ping-ping Lu Shui-jin Shao Hai-dong Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第3期477-483,共7页
Using electroacupuncture and moxibustion to treat peripheral nerve injury is highly efficient with low side effects. However, the electroacupuncture-and moxibustion-based mechanisms underlying nerve repair are still u... Using electroacupuncture and moxibustion to treat peripheral nerve injury is highly efficient with low side effects. However, the electroacupuncture-and moxibustion-based mechanisms underlying nerve repair are still unclear. Here, in vivo and in vitro experiments uncovered one mechanism through which electroacupuncture and moxibustion affect regeneration after peripheral nerve injury. We first established rat models of sciatic nerve injury using neurotomy. Rats were treated with electroacupuncture or moxibustion at acupoints Huantiao (GB30) and Zusanli (ST36). Each treatment lasted 15 minutes, and treatments were given six times a week for 4 consecutive weeks. Behavioral testing was used to determine the sciatic functional index. We used electrophysiological detection to measure sciatic nerve conduction velocity and performed hematoxylin-eosin staining to determine any changes in the gastrocnemius muscle. We used immunohistochemistry to observe changes in the expression of S100—a specific marker for Schwann cells—and an enzyme-linked immunosorbent assay to detect serum level of nerve growth factor. Results showed that compared with the model-only group, sciatic functional index, recovery rate of conduction velocity, diameter recovery of the gastrocnemius muscle fibers, number of S100-immunoreactive cells,and level of nerve growth factor were greater in the electroacupuncture and moxibustion groups. The efficacy did not differ between treatment groups. The serum from treated rats was collected and used to stimulate Schwann cells cultured in vitro. Results showed that the viability of Schwann cells was much higher in the treatment groups than in the model group at 3 and 5 days after treatment. These findings indicate that electroacupuncture and moxibustion promoted nerve regeneration and functional recovery; its mechanism might be associated with the enhancement of Schwann cell proliferation and upregulation of nerve growth factor. 展开更多
关键词 nerve regeneration peripheral nerve injury electroacupuncture moxibustion acupuncture serum Schwann cells nerve growth factor PROLIFERATION REGENERATION sciatic functional index neural regeneration
下载PDF
Platelet-rich plasma gel in combination with Schwann cells for repair of sciatic nerve injury 被引量:11
14
作者 Fagang Ye Haiyan Li Guangxi Qiao Feng Chen Hao Tao Aiyu Ji Yanling Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第29期2286-2292,共7页
Bone marrow mesenchymal stem cells were isolated from New Zealand white rabbits, culture-expanded and differentiated into Schwann cell-like cells. Autologous platelet-dch plasma and Schwann cell-like cells were mixed ... Bone marrow mesenchymal stem cells were isolated from New Zealand white rabbits, culture-expanded and differentiated into Schwann cell-like cells. Autologous platelet-dch plasma and Schwann cell-like cells were mixed in suspension at a density of 1 x 106 cells/mL, prior to introduction into a poly (lactic-co-glycolic acid) conduit. Fabricated tissue-engineered nerves were implanted into rabbits to bridge 10 mm sciatic nerve defects (platelet-rich plasma group). Controls were established using fibrin as the seeding matrix for Schwann cell-like cells at identical density to construct tissue-engineered nerves (fibrin group). Twelve weeks after implantation, toluidine blue staining and scanning electron microscopy were used to demonstrate an increase in the number of regenerating nerve fibers and thickness of the myelin sheath in the platelet-rich plasma group compared with the fibrin group. Fluoro-gold retrograde labeling revealed that the number of Fluoro-gold-positive neurons in the dorsal root ganglion and the spinal cord anterior horn was greater in the platelet-rich plasma group than in the fibrin group. Electrophysiological examination confirmed that compound muscle action potential and nerve conduction velocity were superior in the platelet-rich plasma group compared with the fibrin group. These results indicate that autologous platelet-rich plasma gel can effectively serve as a seeding matrix for Schwann cell-like cells to construct tissue-engineered nerves to promote perJpheral nerve regeneration. 展开更多
关键词 platelet-rich plasma extracellular matrix Schwann cells FIBRIN sciatic nerve peripheral nerve injury nerve tissue engineering neural regeneration
下载PDF
Restorative effect and mechanism of mecobalamin on sciatic nerve crush injury in mice 被引量:11
15
作者 Lin Gan Minquan Qian +4 位作者 Keqin Shi Gang Chen Yanglin Gu Wei Du Guoxing Zhu 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第22期1979-1984,共6页
Mecobalamin, a form of vitamin B12 containing a central metal element (cobalt), is one of the most important mediators of nervous system function. In the clinic, it is often used to accelerate recovery of peripheral... Mecobalamin, a form of vitamin B12 containing a central metal element (cobalt), is one of the most important mediators of nervous system function. In the clinic, it is often used to accelerate recovery of peripheral nerves, but its molecular mechanism remains unclear. In the present study, we performed sciatic nerve crush injury in mice, followed by daily intraperitoneal administra-tion of mecobalamin (65 μg/kg or 130 μg/kg) or saline (negative control). Walking track analysis, histomorphological examination, and quantitative real-time PCR showed that mecobalamin signiifcantly improved functional recovery of the sciatic nerve, thickened the myelin sheath in myelinated nerve ifbers, and increased the cross-sectional area of target muscle cells. Further-more, mecobalamin upregulated mRNA expression of growth associated protein 43 in nerve tissue ipsilateral to the injury, and of neurotrophic factors (nerve growth factor, brain-derived nerve growth factor and ciliary neurotrophic factor) in the L4–6 dorsal root ganglia. Our ifndings indicate that the molecular mechanism underlying the therapeutic effect of mecobalamin after sciatic nerve injury involves the upregulation of multiple neurotrophic factor genes. 展开更多
关键词 nerve regeneration peripheral nerve injury MECOBALAMIN sciatic nerve nerve repair neurotrophic factor neuroprotective effect vitamin B12 molecular mechanism gene expression neural regeneration
下载PDF
Neuroprotective effects of ultrasound-guided nerve growth factor injections after sciatic nerve injury 被引量:8
16
作者 Hong-fei Li Yi-ru Wang +2 位作者 Hui-ping Huo Yue-xiang Wang Jie Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第11期1846-1855,共10页
Nerve growth factor(NGF) plays an important role in promoting neuroregeneration after peripheral nerve injury. However, its effects are limited by its short half-life; it is therefore important to identify an effect... Nerve growth factor(NGF) plays an important role in promoting neuroregeneration after peripheral nerve injury. However, its effects are limited by its short half-life; it is therefore important to identify an effective mode of administration. High-frequency ultrasound(HFU) is increasingly used in the clinic for high-resolution visualization of tissues, and has been proposed as a method for identifying and evaluating peripheral nerve damage after injury. In addition, HFU is widely used for guiding needle placement when administering drugs to a specific site. We hypothesized that HFU guiding would optimize the neuroprotective effects of NGF on sciatic nerve injury in the rabbit. We performed behavioral, ultrasound, electrophysiological, histological, and immunohistochemical evaluation of HFU-guided NGF injections administered immediately after injury, or 14 days later, and compared this mode of administration with intramuscular NGF injections. Across all assessments, HFU-guided NGF injections gave consistently better outcomes than intramuscular NGF injections administered immediately or 14 days after injury, with immediate treatment also yielding better structural and functional results than when the treatment was delayed by 14 days. Our findings indicate that NGF should be administered as early as possible after peripheral nerve injury, and highlight the striking neuroprotective effects of HFU-guided NGF injections on peripheral nerve injury compared with intramuscular administration. 展开更多
关键词 nerve regeneration high frequency ultrasound peripheral nerve injury nerve growthfactor sciatic nerve neurotrophic factor intramuscular injection mediation time noural regeneration
下载PDF
Combination therapy using evening primrose oil and electrical stimulation to improve nerve function following a crush injury of sciatic nerve in male rats 被引量:7
17
作者 Omid Badri Parviz Shahabi +4 位作者 Jalal Abdolalizadeh Mohammad Reza Alipour Hadi Veladi Mehdi Farhoudi Mohsen Sharif Zak 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第3期458-463,共6页
Peripheral nerve injuries with a poor prognosis are common.Evening primrose oil(EPO) has beneficial biological effects and immunomodulatory properties.Since electrical activity plays a major role in neural regenerat... Peripheral nerve injuries with a poor prognosis are common.Evening primrose oil(EPO) has beneficial biological effects and immunomodulatory properties.Since electrical activity plays a major role in neural regeneration,the present study investigated the effects of electrical stimulation(ES),combined with evening primrose oil(EPO),on sciatic nerve function after a crush injury in rats.In anesthetized rats,the sciatic nerve was crushed using small haemostatic forceps followed by ES and/or EPO treatment for 4 weeks.Functional recovery of the sciatic nerve was assessed using the sciatic functional index.Histopathological changes of gastrocnemius muscle atrophy were investigated by light microscopy.Electrophysiological changes were assessed by the nerve conduction velocity of sciatic nerves.Immunohistochemistry was used to determine the remyelination of the sciatic nerve following the interventions.EPO + ES,EPO,and ES obviously improved sciatic nerve function assessed by the sciatic functional index and nerve conduction velocity of the sciatic nerve at 28 days after operation.Expression of the peripheral nerve remyelination marker,protein zero(P0),was increased in the treatment groups at 28 days after operation.Muscle atrophy severity was decreased significantly while the nerve conduction velocity was increased significantly in rats with sciatic nerve injury in the injury + EPO + ES group than in the EPO or ES group.Totally speaking,the combined use of EPO and ES may produce an improving effect on the function of sciatic nerves injured by a crush.The increased expression of P0 may have contributed to improving the functional effects of combination therapy with EPO and ES as well as the electrophysiological and histopathological features of the injured peripheral nerve. 展开更多
关键词 nerve regeneration peripheral nerve injury sciatic nerve injury evening primrose oil electrical stimulation sciatic functional index cuff electrode neural regeneration
下载PDF
Sciatic nerve injury repair: a visualized analysis of research fronts and development trends 被引量:8
18
作者 Guangyao Liu Rui Jiang Yan Jin 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第18期1716-1722,共7页
A total of 3,446 publications regarding sciatic nerve injury repair and protection indexed by Web of Science during 2000-2004 were used for a detailed analysis of temporal-spatial distribu- tion characteristics. Refer... A total of 3,446 publications regarding sciatic nerve injury repair and protection indexed by Web of Science during 2000-2004 were used for a detailed analysis of temporal-spatial distribu- tion characteristics. Reference co-citation networks of the 100 top-cited publications as per the number of total citations were created using the Web of Science database and the information visualization tool, CiteSpaceIIL The key words that showed high frequency in these publications were included for analyzing the research fronts and development trends for sciatic nerve injury repair and protection. Through word frequency trend analysis, studies on bone marrow mesen- chymal stem cells, adipose-derived stem cells, and skeletal muscle-derived multipotent stem cells combined with tissue-engineered scaffold material will become the forefronts in the field of sci- atic nerve injury repair and protection in the near future. 展开更多
关键词 nerve regeneration sciatic nerve injury nerve repair NEUROPROTECTION referenceco-citation networks Web of Science CITESPACE neural regeneration
下载PDF
Effect of the combination of high-frequency repetitive magnetic stimulation and neurotropin on injured sciatic nerve regeneration in rats 被引量:5
19
作者 Jie Chen Xian-Ju Zhou Rong-Bin Sun 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第1期145-151,共7页
Repetitive magnetic stimulation is effective for treating posttraumatic neuropathies following spinal or axonal injury.Neurotropin is a potential treatment for nerve injuries like demyelinating diseases.This study sou... Repetitive magnetic stimulation is effective for treating posttraumatic neuropathies following spinal or axonal injury.Neurotropin is a potential treatment for nerve injuries like demyelinating diseases.This study sought to observe the effects of high-frequency repetitive magnetic stimulation,neurotropin and their combined use in the treatment of peripheral nerve injury in 32 adult male Sprague-Dawley rats.To create a sciatic nerve injury model,a 10 mm-nerve segment of the left sciatic nerve was cut and rotated through 180°and each end restored continuously with interrupted sutures.The rats were randomly divided into four groups.The control group received only a reversed autograft in the left sciatic nerve with no treatment.In the high-frequency repetitive magnetic stimulation group,peripheral high-frequency repetitive magnetic stimulation treatment(20 Hz,20 min/d)was delivered for 10 consecutive days after auto-grafting.In the neurotropin group,neurotropin therapy(0.96 NU/kg per day)was administrated for 10 consecutive days after surgery.In the combined group,the combination of peripheral high-frequency repetitive magnetic stimulation(20 Hz,20 min/d)and neurotropin(0.96 NU/kg per day)was given for 10 consecutive days after the operation.The Basso-Beattie-Bresnahan locomotor rating scale was used to assess the behavioral recovery of the injured nerve.The sciatic functional index was used to evaluate the recovery of motor functions.Toluidine blue staining was performed to determine the number of myelinated fibers in the distal and proximal grafts.Immunohistochemistry staining was used to detect the length of axons marked by neurofilament 200.Our results reveal that the Basso-Beattie-Bresnahan locomotor rating scale scores,sciatic functional index,the number of myelinated fibers in distal and proximal grafts were higher and axon lengths were longer in the high-frequency repetitive magnetic stimulation,neurotropin and combined groups compared with the control group.These measures were not significantly different among the high-frequency repetitive magnetic stimulation,neurotropin and combined groups.Therefore,our results suggest that peripheral high-frequency repetitive magnetic stimulation or neurotropin can promote the repair of injured sciatic nerves,but their combined use seems to offer no significant advantage.This study was approved by the Animal Ethics Committee of the Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University,China on December 23,2014(approval No.2014keyan002-01). 展开更多
关键词 AXON myelinated nerve fibers nerve REGENERATION neurological rehabilitation NEUROTROPIN peripheral nerve injury REPETITIVE magnetic stimulation sciatic nerve trauma
下载PDF
The effects of claudin 14 during early Wallerian degeneration after sciatic nerve injury 被引量:7
20
作者 Leilei Gong Yun Zhu +4 位作者 Xi Xu Huaiqin Li Weimin Guo Qin Zhao Dengbing Yao 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第24期2151-2158,共8页
Claudin 14 has been shown to promote nerve repair and regeneration in the early stages of Wallerian degeneration (0-4 days) in rats with sciatic nerve injury, but the mechanism underlying this process remains poorly... Claudin 14 has been shown to promote nerve repair and regeneration in the early stages of Wallerian degeneration (0-4 days) in rats with sciatic nerve injury, but the mechanism underlying this process remains poorly understood. This study reported the effects of claudin 14 on nerve degeneration and regeneration during early Wallerian degeneration. Claudin 14 expression was up-regulated in sciatic nerve 4 days after Wallerian degeneration. The altered expression of claudin 14 in Schwann cells resulted in expression changes of cytokines in vitro. Expression of claudin 14 affected c-Jun, but not Akt anal ERK1/2 patl^ways, l^urther studies reve^ed that enhanced expression of claudin 14 could promote Schwann cell proliferation and migration. Silencing of claudin 14 expression resulted in Schwann cell apoptosis and reduction in Schwann cell proliferation. Our data revealed the role of claudin 14 in early Wallerian degeneration, which may provide new insights into the molecular mechanisms of Wallerian degeneration. 展开更多
关键词 nerve regeneration peripheral nerve injury Wallerian degeneration sciatic nerve injury Claudin 14 rat Schwann cell Signal pathways C-JUN Akt ERK1/2 NSFC grant neural regeneration
下载PDF
上一页 1 2 118 下一页 到第
使用帮助 返回顶部