Efficient iterative unsupervised machine learning involving probabilistic clustering analysis with the expectation-maximization(EM)clustering algorithm is applied to categorize reservoir facies by exploiting latent an...Efficient iterative unsupervised machine learning involving probabilistic clustering analysis with the expectation-maximization(EM)clustering algorithm is applied to categorize reservoir facies by exploiting latent and observable well-log variables from a clastic reservoir in the Majnoon oilfield,southern Iraq.The observable well-log variables consist of conventional open-hole,well-log data and the computer-processed interpretation of gamma rays,bulk density,neutron porosity,compressional sonic,deep resistivity,shale volume,total porosity,and water saturation,from three wells located in the Nahr Umr reservoir.The latent variables include shale volume and water saturation.The EM algorithm efficiently characterizes electrofacies through iterative machine learning to identify the local maximum likelihood estimates(MLE)of the observable and latent variables in the studied dataset.The optimized EM model developed successfully predicts the core-derived facies classification in two of the studied wells.The EM model clusters the data into three distinctive reservoir electrofacies(F1,F2,and F3).F1 represents a gas-bearing electrofacies with low shale volume(Vsh)and water saturation(Sw)and high porosity and permeability values identifying it as an attractive reservoir target.The results of the EM model are validated using nuclear magnetic resonance(NMR)data from the third studied well for which no cores were recovered.The NMR results confirm the effectiveness and accuracy of the EM model in predicting electrofacies.The utilization of the EM algorithm for electrofacies classification/cluster analysis is innovative.Specifically,the clusters it establishes are less rigidly constrained than those derived from the more commonly used K-means clustering method.The EM methodology developed generates dependable electrofacies estimates in the studied reservoir intervals where core samples are not available.Therefore,once calibrated with core data in some wells,the model is suitable for application to other wells that lack core data.展开更多
A significant portion of Landslide Early Warning Systems (LEWS) relies on the definition of operational thresholds and the monitoring of cumulative rainfall for alert issuance. These thresholds can be obtained in vari...A significant portion of Landslide Early Warning Systems (LEWS) relies on the definition of operational thresholds and the monitoring of cumulative rainfall for alert issuance. These thresholds can be obtained in various ways, but most often they are based on previous landslide data. This approach introduces several limitations. For instance, there is a requirement for the location to have been previously monitored in some way to have this type of information recorded. Another significant limitation is the need for information regarding the location and timing of incidents. Despite the current ease of obtaining location information (GPS, drone images, etc.), the timing of the event remains challenging to ascertain for a considerable portion of landslide data. Concerning rainfall monitoring, there are multiple ways to consider it, for instance, examining accumulations over various intervals (1 h, 6 h, 24 h, 72 h), as well as in the calculation of effective rainfall, which represents the precipitation that actually infiltrates the soil. However, in the vast majority of cases, both the thresholds and the rain monitoring approach are defined manually and subjectively, relying on the operators’ experience. This makes the process labor-intensive and time-consuming, hindering the establishment of a truly standardized and rapidly scalable methodology on a large scale. In this work, we propose a Landslides Early Warning System (LEWS) based on the concept of rainfall half-life and the determination of thresholds using Cluster Analysis and data inversion. The system is designed to be applied in extensive monitoring networks, such as the one utilized by Cemaden, Brazil’s National Center for Monitoring and Early Warning of Natural Disasters.展开更多
This paper investigates the design essence of Chinese classical private gardens,integrating their design elements and fundamental principles.It systematically analyzes the unique characteristics and differences among ...This paper investigates the design essence of Chinese classical private gardens,integrating their design elements and fundamental principles.It systematically analyzes the unique characteristics and differences among classical private gardens in the Northern,Jiangnan,and Lingnan regions.The study examines nine classical private gardens from Northern China,Jiangnan,and Lingnan by utilizing the advanced tool of principal component cluster analysis.Based on literature analysis and field research,273 variables were selected for principal component analysis,from which four components with higher contribution rates were chosen for further study.Subsequently,we employed clustering analysis techniques to compare the differences among the three types of gardens.The results reveal that the first principal component effectively highlights the differences between Jiangnan and Lingnan private gardens.The second principal component serves as the key to defining the types of Northern private gardens and distinguishing them from the other two types,and the third principal component indicates that Lingnan private gardens can be categorized into two distinct types as well.展开更多
Inter-simple sequence repeat(ISSR) molecular markers were applied to analyze the genetic diversity and clustering of 48 introduced and bred cultivars of Olea euyopaea L. Totally 106 DNA bands were amplified by 11 sc...Inter-simple sequence repeat(ISSR) molecular markers were applied to analyze the genetic diversity and clustering of 48 introduced and bred cultivars of Olea euyopaea L. Totally 106 DNA bands were amplified by 11 screened primers, including 99 polymorphic bands; the percentage of polymorphic loci was 93.40%, indicating a rich genetic diversity in Olea euyopaea L. germplasm resources. Based on Nei's genetic distances between various cultivars, a dendrogram of 48 cultivars of Olea euyopaea L. was constructed using unweighted pair-group(UPMGA)method,which showed that 48 cultivars were clustered into four main categories; 84.6% of native cultivars were clustered into two categories; most of introduced cultivars were clustered based on their sources and main usages but not on their geographic origins. This study will provide references for the utilization and further genetic improvement of Olea euyopaea L. germplasm resources.展开更多
In order to mine production and security information from security supervising data and to ensure security and safety involved in production and decision-making,a clustering analysis algorithm for security supervising...In order to mine production and security information from security supervising data and to ensure security and safety involved in production and decision-making,a clustering analysis algorithm for security supervising data based on a semantic description in coal mines is studied.First,the semantic and numerical-based hybrid description method of security supervising data in coal mines is described.Secondly,the similarity measurement method of semantic and numerical data are separately given and a weight-based hybrid similarity measurement method for the security supervising data based on a semantic description in coal mines is presented.Thirdly,taking the hybrid similarity measurement method as the distance criteria and using a grid methodology for reference,an improved CURE clustering algorithm based on the grid is presented.Finally,the simulation results of a security supervising data set in coal mines validate the efficiency of the algorithm.展开更多
In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared...In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared neighbors,most neighbor relationships can only handle single structural relationships,and the identification accuracy is low for datasets with multiple structures.In life,people’s first instinct for complex things is to divide them into multiple parts to complete.Partitioning the dataset into more sub-graphs is a good idea approach to identifying complex structures.Taking inspiration from this,we propose a novel neighbor method:Shared Natural Neighbors(SNaN).To demonstrate the superiority of this neighbor method,we propose a shared natural neighbors-based hierarchical clustering algorithm for discovering arbitrary-shaped clusters(HC-SNaN).Our algorithm excels in identifying both spherical clusters and manifold clusters.Tested on synthetic datasets and real-world datasets,HC-SNaN demonstrates significant advantages over existing clustering algorithms,particularly when dealing with datasets containing arbitrary shapes.展开更多
[Objective] This study aimed to develop ACGM markers for the clustering analysis of large grained Brassica napus materials. [Method] A total of 44 pairs of ACGM primers were designed according to 18 genes related to A...[Objective] This study aimed to develop ACGM markers for the clustering analysis of large grained Brassica napus materials. [Method] A total of 44 pairs of ACGM primers were designed according to 18 genes related to Arabidopsis grain development and their homologous rape EST sequences. After electrophoresis, 18 pairs of ACGM primers were selected for the clustering analysis of 16 larger grained samples and four fine grained samples of rapeseed. [Result] PCR result showed that 2-6 specific bands were respectively amplified by each pair of primes, and all the bands were polymorphic and repeatable, suggesting that the optimized ACGM markers were useful for clustering analysis of B. napus species. Clustering analysis revealed that the 20 rapeseed samples were divided into three clusters A, B, and C at similarity coefficient 0.6. Then, the clusters A and B were further divided into five sub clusters A1, A2, A3, B1 and B2 at similarity coefficient 0.67. [Conclusion] This study will provide theoretical and practical values for rape breeding.展开更多
The recent pandemic crisis has highlighted the importance of the availability and management of health data to respond quickly and effectively to health emergencies, while respecting the fundamental rights of every in...The recent pandemic crisis has highlighted the importance of the availability and management of health data to respond quickly and effectively to health emergencies, while respecting the fundamental rights of every individual. In this context, it is essential to find a balance between the protection of privacy and the safeguarding of public health, using tools that guarantee transparency and consent to the processing of data by the population. This work, starting from a pilot investigation conducted in the Polyclinic of Bari as part of the Horizon Europe Seeds project entitled “Multidisciplinary analysis of technological tracing models of contagion: the protection of rights in the management of health data”, has the objective of promoting greater patient awareness regarding the processing of their health data and the protection of privacy. The methodology used the PHICAT (Personal Health Information Competence Assessment Tool) as a tool and, through the administration of a questionnaire, the aim was to evaluate the patients’ ability to express their consent to the release and processing of health data. The results that emerged were analyzed in relation to the 4 domains in which the process is divided which allows evaluating the patients’ ability to express a conscious choice and, also, in relation to the socio-demographic and clinical characteristics of the patients themselves. This study can contribute to understanding patients’ ability to give their consent and improve information regarding the management of health data by increasing confidence in granting the use of their data for research and clinical management.展开更多
In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge pr...In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge process in the wastewater treatment. By the way of trend map, keyword knowledge map, and co-cited knowledge map, specific visualization analysis and identification of the authors, institutions and regions were concluded. Furthermore, the topics and hotspots of water quality prediction in activated sludge process through the literature-co-citation-based cluster analysis and literature citation burst analysis were also determined, which not only reflected the historical evolution progress to a certain extent, but also provided the direction and insight of the knowledge structure of water quality prediction and activated sludge process for future research.展开更多
As critical conduits for the dissemination of online public opinion,social media platforms offer a timely and effective means for managing emergencies during major disasters,such as earthquakes.This study focuses on t...As critical conduits for the dissemination of online public opinion,social media platforms offer a timely and effective means for managing emergencies during major disasters,such as earthquakes.This study focuses on the analysis of online public opinions following the Maduo M7.4 earthquake in Qinghai Province and the Yangbi M6.4 earthquake in Yunnan Province.By collecting,cleaning,and organizing post-earthquake Sina Weibo(short for Weibo)data,we employed the Latent Dirichlet Allocation(LDA)model to extract information pertinent to public opinion on these earthquakes.This analysis included a comparison of the nature and temporal evolution of online public opinions related to both events.An emotion analysis,utilizing an emotion dictionary,categorized the emotional content of post-earthquake Weibo posts,facilitating a comparative study of the characteristics and temporal trends of online public emotions following the earthquakes.The findings were visualized using Geographic Information System(GIS)techniques.The analysis revealed certain commonalities in online public opinion following both earthquakes.Notably,the peak of online engagement occurred within the first 24 hours post-earthquake,with a rapid decline observed between 24 to 48 hours thereafter.The variation in popularity of online public opinion was linked to aftershock occurrences.Adjusted for population factors,online engagement in areas surrounding the earthquake sites and in Sichuan Province was significantly high.Initially dominated by feelings of“fear”and“surprise”,the public sentiment shifted towards a more positive outlook with the onset of rescue operations.However,distinctions in the online public response to each earthquake were also noted.Following the Yangbi earthquake,Yunnan Province reported the highest number of Weibo posts nationwide;in contrast,Qinghai Province ranked third post-Maduo earthquake,attributable to its smaller population size and extensive damage to communication infrastructure.This research offers a methodological approach for the analysis of online public opinion related to earthquakes,providing insights for the enhancement of post-disaster emergency management and public mental health support.展开更多
In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluste...In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics.展开更多
[Objective] This study aimed to investigate the trace elements in Rehman- nia glutinosa Libosch. by using principal component analysis and clustering analysis. [Method] Principal component analysis and clustering anal...[Objective] This study aimed to investigate the trace elements in Rehman- nia glutinosa Libosch. by using principal component analysis and clustering analysis. [Method] Principal component analysis and clustering analysis of R. glutinosa medicinal materials from different sources were conducted with contents of six trace elements as indices. [Result] The principal component analysis could comprehen- sively evaluate the quality of R. glutinosa samples with objective results which was consistent with the results of clustering analysis. [Conclusion] Principal component analysis and clustering analysis methods can be used for the quality evaluation of Chinese medicinal materials with multiple indices.展开更多
In the past 30 years, Chinese enterprises have been a hot topic of discussion and concern among the general public in terms of economic and social status, ownership structure, business mechanism, and management level....In the past 30 years, Chinese enterprises have been a hot topic of discussion and concern among the general public in terms of economic and social status, ownership structure, business mechanism, and management level. Solving the problem of employment for the people is an important prerequisite for their peaceful living and work, as well as a prerequisite and foundation for building a harmonious society. The employment situation of private enterprises has always been of great concern to the outside world, and these two major jobs have always occupied an important position in the employment field of China that cannot be ignored. With the establishment of the market economy system, individual and private enterprises have become important components of the socialist economy, making significant contributions to economic development and social progress. The rapid development of China’s economy, on the one hand, is the embodiment of the superiority of China’s socialist market economic system, and on the other hand, it is the role of the tertiary industry and private enterprises in promoting the national economy. Since the 1990s, China’s private enterprises have become a new economic growth point for local and even national countries, and are one of the important ways to arrange employment and achieve social stability. This paper studies the employment of private enterprises and individuals from the perspective of statistics, extracts relevant data from China statistical Yearbook, uses the relevant knowledge of statistics to process the data, obtains the conclusion and puts forward relevant constructive suggestions.展开更多
The scientific and fair positioning of monitoring locations for surface displacement on slopes is a prerequisite for early warning and forecasting.However,there is no specific provision on how to effectively determine...The scientific and fair positioning of monitoring locations for surface displacement on slopes is a prerequisite for early warning and forecasting.However,there is no specific provision on how to effectively determine the number and location of monitoring points according to the actual deformation characteristics of the slope.There are still some defects in the layout of monitoring points.To this end,based on displacement data series and spatial location information of surface displacement monitoring points,by combining displacement series correlation and spatial distance influence factors,a spatial deformation correlation calculation model of slope based on clustering analysis was proposed to calculate the correlation between different monitoring points,based on which the deformation area of the slope was divided.The redundant monitoring points in each partition were eliminated based on the partition's outcome,and the overall optimal arrangement of slope monitoring points was then achieved.This method scientifically addresses the issues of slope deformation zoning and data gathering overlap.It not only eliminates human subjectivity from slope deformation zoning but also increases the efficiency and accuracy of slope monitoring.In order to verify the effectiveness of the method,a sand-mudstone interbedded CounterTilt excavation slope in the Chongqing city of China was used as the research object.Twenty-four monitoring points deployed on this slope were monitored for surface displacement for 13 months.The spatial location of the monitoring points was discussed.The results show that the proposed method of slope deformation zoning and the optimized placement of monitoring points are feasible.展开更多
The classification of the springtime water mass has an important influence on the hydrography,regional climate change and fishery in the Taiwan Strait.Based on 58 stations of CTD profiling data collected in the wester...The classification of the springtime water mass has an important influence on the hydrography,regional climate change and fishery in the Taiwan Strait.Based on 58 stations of CTD profiling data collected in the western and southwestern Taiwan Strait during the spring cruise of 2019,we analyze the spatial distributions of temperature(T)and salinity(S)in the investigation area.Then by using the fuzzy cluster method combined with the T-S similarity number,we classify the investigation area into 5 water masses:the Minzhe Coastal Water(MZCW),the Taiwan Strait Mixed Water(TSMW),the South China Sea Surface Water(SCSSW),the South China Sea Subsurface Water(SCSUW)and the Kuroshio Branch Water(KBW).The MZCW appears in the near surface layer along the western coast of Taiwan Strait,showing low-salinity(<32.0)tongues near the Minjiang River Estuary and the Xiamen Bay mouth.The TSMW covers most upper layer of the investigation area.The SCSSW is mainly distributed in the upper layer of the southwestern Taiwan Strait,beneath which is the SCSUW.The KBW is a high temperature(core value of 26.36℃)and high salinity(core value of 34.62)water mass located southeast of the Taiwan Bank and partially in the central Taiwan Strait.展开更多
In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tig...In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method.展开更多
Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algor...Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algorithms force a structure in the data instead of discovering one.To avoid false structures in the relations of data,a novel clusterability assessment method called density-based clusterability measure is proposed in this paper.I measures the prominence of clustering structure in the data to evaluate whether a cluster analysis could produce a meaningfu insight to the relationships in the data.This is especially useful in time-series data since visualizing the structure in time-series data is hard.The performance of the clusterability measure is evalu ated against several synthetic data sets and time-series data sets which illustrate that the density-based clusterability measure can successfully indicate clustering structure of time-series data.展开更多
Background:To solve the cluster analysis better,we propose a new method based on the chaotic particle swarm optimization(CPSO)algorithm.Methods:In order to enhance the performance in clustering,we propose a novel meth...Background:To solve the cluster analysis better,we propose a new method based on the chaotic particle swarm optimization(CPSO)algorithm.Methods:In order to enhance the performance in clustering,we propose a novel method based on CPSO.We first evaluate the clustering performance of this model using the variance ratio criterion(VRC)as the evaluation metric.The effectiveness of the CPSO algorithm is compared with that of the traditional particle swarm optimization(PSO)algorithm.The CPSO aims to improve the VRC value while avoiding local optimal solutions.The simulated dataset is set at three levels of overlapping:non-overlapping,partial overlapping,and severe overlapping.Finally,we compare CPSO with two other methods.Results:By observing the comparative results,our proposed CPSO method performs outstandingly.In the conditions of non-overlapping,partial overlapping,and severe overlapping,our method has the best VRC values of 1683.2,620.5,and 275.6,respectively.The mean VRC values in these three cases are 1683.2,617.8,and 222.6.Conclusion:The CPSO performed better than other methods for cluster analysis problems.CPSO is effective for cluster analysis.展开更多
The goal of this study was to optimize the constitutive parameters of foundation soils using a k-means algorithm with clustering analysis. A database was collected from unconfined compression tests, Proctor tests and ...The goal of this study was to optimize the constitutive parameters of foundation soils using a k-means algorithm with clustering analysis. A database was collected from unconfined compression tests, Proctor tests and grain distribution tests of soils taken from three different types of foundation pits: raft foundations, partial raft foundations and strip foundations. k-means algorithm with clustering analysis was applied to determine the most appropriate foundation type given the un- confined compression strengths and other parameters of the different soils.展开更多
Traditional unsupervised seismic facies analysis techniques need to assume that seismic data obey mixed Gaussian distribution.However,fi eld seismic data may not meet this condition,thereby leading to wrong classifi c...Traditional unsupervised seismic facies analysis techniques need to assume that seismic data obey mixed Gaussian distribution.However,fi eld seismic data may not meet this condition,thereby leading to wrong classifi cation in the application of this technology.This paper introduces a spectral clustering technique for unsupervised seismic facies analysis.This algorithm is based on on the idea of a graph to cluster the data.Its kem is that seismic data are regarded as points in space,points can be connected with the edge and construct to graphs.When the graphs are divided,the weights of the edges between the different subgraphs are as low as possible,whereas the weights of the inner edges of the subgraph should be as high as possible.That has high computational complexity and entails large memory consumption for spectral clustering algorithm.To solve the problem this paper introduces the idea of sparse representation into spectral clustering.Through the selection of a small number of local sparse representation points,the spectral clustering matrix of all sample points is approximately represented to reduce the cost of spectral clustering operation.Verifi cation of physical model and fi eld data shows that the proposed approach can obtain more accurate seismic facies classification results without considering the data meet any hypothesis.The computing efficiency of this new method is better than that of the conventional spectral clustering method,thereby meeting the application needs of fi eld seismic data.展开更多
文摘Efficient iterative unsupervised machine learning involving probabilistic clustering analysis with the expectation-maximization(EM)clustering algorithm is applied to categorize reservoir facies by exploiting latent and observable well-log variables from a clastic reservoir in the Majnoon oilfield,southern Iraq.The observable well-log variables consist of conventional open-hole,well-log data and the computer-processed interpretation of gamma rays,bulk density,neutron porosity,compressional sonic,deep resistivity,shale volume,total porosity,and water saturation,from three wells located in the Nahr Umr reservoir.The latent variables include shale volume and water saturation.The EM algorithm efficiently characterizes electrofacies through iterative machine learning to identify the local maximum likelihood estimates(MLE)of the observable and latent variables in the studied dataset.The optimized EM model developed successfully predicts the core-derived facies classification in two of the studied wells.The EM model clusters the data into three distinctive reservoir electrofacies(F1,F2,and F3).F1 represents a gas-bearing electrofacies with low shale volume(Vsh)and water saturation(Sw)and high porosity and permeability values identifying it as an attractive reservoir target.The results of the EM model are validated using nuclear magnetic resonance(NMR)data from the third studied well for which no cores were recovered.The NMR results confirm the effectiveness and accuracy of the EM model in predicting electrofacies.The utilization of the EM algorithm for electrofacies classification/cluster analysis is innovative.Specifically,the clusters it establishes are less rigidly constrained than those derived from the more commonly used K-means clustering method.The EM methodology developed generates dependable electrofacies estimates in the studied reservoir intervals where core samples are not available.Therefore,once calibrated with core data in some wells,the model is suitable for application to other wells that lack core data.
文摘A significant portion of Landslide Early Warning Systems (LEWS) relies on the definition of operational thresholds and the monitoring of cumulative rainfall for alert issuance. These thresholds can be obtained in various ways, but most often they are based on previous landslide data. This approach introduces several limitations. For instance, there is a requirement for the location to have been previously monitored in some way to have this type of information recorded. Another significant limitation is the need for information regarding the location and timing of incidents. Despite the current ease of obtaining location information (GPS, drone images, etc.), the timing of the event remains challenging to ascertain for a considerable portion of landslide data. Concerning rainfall monitoring, there are multiple ways to consider it, for instance, examining accumulations over various intervals (1 h, 6 h, 24 h, 72 h), as well as in the calculation of effective rainfall, which represents the precipitation that actually infiltrates the soil. However, in the vast majority of cases, both the thresholds and the rain monitoring approach are defined manually and subjectively, relying on the operators’ experience. This makes the process labor-intensive and time-consuming, hindering the establishment of a truly standardized and rapidly scalable methodology on a large scale. In this work, we propose a Landslides Early Warning System (LEWS) based on the concept of rainfall half-life and the determination of thresholds using Cluster Analysis and data inversion. The system is designed to be applied in extensive monitoring networks, such as the one utilized by Cemaden, Brazil’s National Center for Monitoring and Early Warning of Natural Disasters.
文摘This paper investigates the design essence of Chinese classical private gardens,integrating their design elements and fundamental principles.It systematically analyzes the unique characteristics and differences among classical private gardens in the Northern,Jiangnan,and Lingnan regions.The study examines nine classical private gardens from Northern China,Jiangnan,and Lingnan by utilizing the advanced tool of principal component cluster analysis.Based on literature analysis and field research,273 variables were selected for principal component analysis,from which four components with higher contribution rates were chosen for further study.Subsequently,we employed clustering analysis techniques to compare the differences among the three types of gardens.The results reveal that the first principal component effectively highlights the differences between Jiangnan and Lingnan private gardens.The second principal component serves as the key to defining the types of Northern private gardens and distinguishing them from the other two types,and the third principal component indicates that Lingnan private gardens can be categorized into two distinct types as well.
基金Supported by Key Project of New Product Development in Yunnan Province(2009BB006)~~
文摘Inter-simple sequence repeat(ISSR) molecular markers were applied to analyze the genetic diversity and clustering of 48 introduced and bred cultivars of Olea euyopaea L. Totally 106 DNA bands were amplified by 11 screened primers, including 99 polymorphic bands; the percentage of polymorphic loci was 93.40%, indicating a rich genetic diversity in Olea euyopaea L. germplasm resources. Based on Nei's genetic distances between various cultivars, a dendrogram of 48 cultivars of Olea euyopaea L. was constructed using unweighted pair-group(UPMGA)method,which showed that 48 cultivars were clustered into four main categories; 84.6% of native cultivars were clustered into two categories; most of introduced cultivars were clustered based on their sources and main usages but not on their geographic origins. This study will provide references for the utilization and further genetic improvement of Olea euyopaea L. germplasm resources.
基金The National Natural Science Foundation of China(No.50674086)Specialized Research Fund for the Doctoral Program of Higher Education(No.20060290508)the Postdoctoral Scientific Program of Jiangsu Province(No.0701045B)
文摘In order to mine production and security information from security supervising data and to ensure security and safety involved in production and decision-making,a clustering analysis algorithm for security supervising data based on a semantic description in coal mines is studied.First,the semantic and numerical-based hybrid description method of security supervising data in coal mines is described.Secondly,the similarity measurement method of semantic and numerical data are separately given and a weight-based hybrid similarity measurement method for the security supervising data based on a semantic description in coal mines is presented.Thirdly,taking the hybrid similarity measurement method as the distance criteria and using a grid methodology for reference,an improved CURE clustering algorithm based on the grid is presented.Finally,the simulation results of a security supervising data set in coal mines validate the efficiency of the algorithm.
基金This work was supported by Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-M202300502,KJQN201800539).
文摘In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared neighbors,most neighbor relationships can only handle single structural relationships,and the identification accuracy is low for datasets with multiple structures.In life,people’s first instinct for complex things is to divide them into multiple parts to complete.Partitioning the dataset into more sub-graphs is a good idea approach to identifying complex structures.Taking inspiration from this,we propose a novel neighbor method:Shared Natural Neighbors(SNaN).To demonstrate the superiority of this neighbor method,we propose a shared natural neighbors-based hierarchical clustering algorithm for discovering arbitrary-shaped clusters(HC-SNaN).Our algorithm excels in identifying both spherical clusters and manifold clusters.Tested on synthetic datasets and real-world datasets,HC-SNaN demonstrates significant advantages over existing clustering algorithms,particularly when dealing with datasets containing arbitrary shapes.
基金Supported by the National Natural Science Foundation of China(30860147)Open Funds of National Key Laboratory of Crop Genetic Improvement(ZK200902)Natural Science Foundation of Yunnan Province(2011FB117)~~
文摘[Objective] This study aimed to develop ACGM markers for the clustering analysis of large grained Brassica napus materials. [Method] A total of 44 pairs of ACGM primers were designed according to 18 genes related to Arabidopsis grain development and their homologous rape EST sequences. After electrophoresis, 18 pairs of ACGM primers were selected for the clustering analysis of 16 larger grained samples and four fine grained samples of rapeseed. [Result] PCR result showed that 2-6 specific bands were respectively amplified by each pair of primes, and all the bands were polymorphic and repeatable, suggesting that the optimized ACGM markers were useful for clustering analysis of B. napus species. Clustering analysis revealed that the 20 rapeseed samples were divided into three clusters A, B, and C at similarity coefficient 0.6. Then, the clusters A and B were further divided into five sub clusters A1, A2, A3, B1 and B2 at similarity coefficient 0.67. [Conclusion] This study will provide theoretical and practical values for rape breeding.
文摘The recent pandemic crisis has highlighted the importance of the availability and management of health data to respond quickly and effectively to health emergencies, while respecting the fundamental rights of every individual. In this context, it is essential to find a balance between the protection of privacy and the safeguarding of public health, using tools that guarantee transparency and consent to the processing of data by the population. This work, starting from a pilot investigation conducted in the Polyclinic of Bari as part of the Horizon Europe Seeds project entitled “Multidisciplinary analysis of technological tracing models of contagion: the protection of rights in the management of health data”, has the objective of promoting greater patient awareness regarding the processing of their health data and the protection of privacy. The methodology used the PHICAT (Personal Health Information Competence Assessment Tool) as a tool and, through the administration of a questionnaire, the aim was to evaluate the patients’ ability to express their consent to the release and processing of health data. The results that emerged were analyzed in relation to the 4 domains in which the process is divided which allows evaluating the patients’ ability to express a conscious choice and, also, in relation to the socio-demographic and clinical characteristics of the patients themselves. This study can contribute to understanding patients’ ability to give their consent and improve information regarding the management of health data by increasing confidence in granting the use of their data for research and clinical management.
文摘In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge process in the wastewater treatment. By the way of trend map, keyword knowledge map, and co-cited knowledge map, specific visualization analysis and identification of the authors, institutions and regions were concluded. Furthermore, the topics and hotspots of water quality prediction in activated sludge process through the literature-co-citation-based cluster analysis and literature citation burst analysis were also determined, which not only reflected the historical evolution progress to a certain extent, but also provided the direction and insight of the knowledge structure of water quality prediction and activated sludge process for future research.
基金funded by the Science Research Project of Hebei Education Department(No.BJK2023088).
文摘As critical conduits for the dissemination of online public opinion,social media platforms offer a timely and effective means for managing emergencies during major disasters,such as earthquakes.This study focuses on the analysis of online public opinions following the Maduo M7.4 earthquake in Qinghai Province and the Yangbi M6.4 earthquake in Yunnan Province.By collecting,cleaning,and organizing post-earthquake Sina Weibo(short for Weibo)data,we employed the Latent Dirichlet Allocation(LDA)model to extract information pertinent to public opinion on these earthquakes.This analysis included a comparison of the nature and temporal evolution of online public opinions related to both events.An emotion analysis,utilizing an emotion dictionary,categorized the emotional content of post-earthquake Weibo posts,facilitating a comparative study of the characteristics and temporal trends of online public emotions following the earthquakes.The findings were visualized using Geographic Information System(GIS)techniques.The analysis revealed certain commonalities in online public opinion following both earthquakes.Notably,the peak of online engagement occurred within the first 24 hours post-earthquake,with a rapid decline observed between 24 to 48 hours thereafter.The variation in popularity of online public opinion was linked to aftershock occurrences.Adjusted for population factors,online engagement in areas surrounding the earthquake sites and in Sichuan Province was significantly high.Initially dominated by feelings of“fear”and“surprise”,the public sentiment shifted towards a more positive outlook with the onset of rescue operations.However,distinctions in the online public response to each earthquake were also noted.Following the Yangbi earthquake,Yunnan Province reported the highest number of Weibo posts nationwide;in contrast,Qinghai Province ranked third post-Maduo earthquake,attributable to its smaller population size and extensive damage to communication infrastructure.This research offers a methodological approach for the analysis of online public opinion related to earthquakes,providing insights for the enhancement of post-disaster emergency management and public mental health support.
文摘In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics.
基金Supported by Fund of Sichuan Provincial Administration of traditional Chinese Medicine(2008-12)~~
文摘[Objective] This study aimed to investigate the trace elements in Rehman- nia glutinosa Libosch. by using principal component analysis and clustering analysis. [Method] Principal component analysis and clustering analysis of R. glutinosa medicinal materials from different sources were conducted with contents of six trace elements as indices. [Result] The principal component analysis could comprehen- sively evaluate the quality of R. glutinosa samples with objective results which was consistent with the results of clustering analysis. [Conclusion] Principal component analysis and clustering analysis methods can be used for the quality evaluation of Chinese medicinal materials with multiple indices.
文摘In the past 30 years, Chinese enterprises have been a hot topic of discussion and concern among the general public in terms of economic and social status, ownership structure, business mechanism, and management level. Solving the problem of employment for the people is an important prerequisite for their peaceful living and work, as well as a prerequisite and foundation for building a harmonious society. The employment situation of private enterprises has always been of great concern to the outside world, and these two major jobs have always occupied an important position in the employment field of China that cannot be ignored. With the establishment of the market economy system, individual and private enterprises have become important components of the socialist economy, making significant contributions to economic development and social progress. The rapid development of China’s economy, on the one hand, is the embodiment of the superiority of China’s socialist market economic system, and on the other hand, it is the role of the tertiary industry and private enterprises in promoting the national economy. Since the 1990s, China’s private enterprises have become a new economic growth point for local and even national countries, and are one of the important ways to arrange employment and achieve social stability. This paper studies the employment of private enterprises and individuals from the perspective of statistics, extracts relevant data from China statistical Yearbook, uses the relevant knowledge of statistics to process the data, obtains the conclusion and puts forward relevant constructive suggestions.
基金funding from the National Natural Science Foundation of China(No.41572308)。
文摘The scientific and fair positioning of monitoring locations for surface displacement on slopes is a prerequisite for early warning and forecasting.However,there is no specific provision on how to effectively determine the number and location of monitoring points according to the actual deformation characteristics of the slope.There are still some defects in the layout of monitoring points.To this end,based on displacement data series and spatial location information of surface displacement monitoring points,by combining displacement series correlation and spatial distance influence factors,a spatial deformation correlation calculation model of slope based on clustering analysis was proposed to calculate the correlation between different monitoring points,based on which the deformation area of the slope was divided.The redundant monitoring points in each partition were eliminated based on the partition's outcome,and the overall optimal arrangement of slope monitoring points was then achieved.This method scientifically addresses the issues of slope deformation zoning and data gathering overlap.It not only eliminates human subjectivity from slope deformation zoning but also increases the efficiency and accuracy of slope monitoring.In order to verify the effectiveness of the method,a sand-mudstone interbedded CounterTilt excavation slope in the Chongqing city of China was used as the research object.Twenty-four monitoring points deployed on this slope were monitored for surface displacement for 13 months.The spatial location of the monitoring points was discussed.The results show that the proposed method of slope deformation zoning and the optimized placement of monitoring points are feasible.
基金The National Natural Science Foundation of China under contract Nos 42106005,91958203,41676131,41876155.
文摘The classification of the springtime water mass has an important influence on the hydrography,regional climate change and fishery in the Taiwan Strait.Based on 58 stations of CTD profiling data collected in the western and southwestern Taiwan Strait during the spring cruise of 2019,we analyze the spatial distributions of temperature(T)and salinity(S)in the investigation area.Then by using the fuzzy cluster method combined with the T-S similarity number,we classify the investigation area into 5 water masses:the Minzhe Coastal Water(MZCW),the Taiwan Strait Mixed Water(TSMW),the South China Sea Surface Water(SCSSW),the South China Sea Subsurface Water(SCSUW)and the Kuroshio Branch Water(KBW).The MZCW appears in the near surface layer along the western coast of Taiwan Strait,showing low-salinity(<32.0)tongues near the Minjiang River Estuary and the Xiamen Bay mouth.The TSMW covers most upper layer of the investigation area.The SCSSW is mainly distributed in the upper layer of the southwestern Taiwan Strait,beneath which is the SCSUW.The KBW is a high temperature(core value of 26.36℃)and high salinity(core value of 34.62)water mass located southeast of the Taiwan Bank and partially in the central Taiwan Strait.
基金funded by the National Natural Science Foundation of China(42174131)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-03).
文摘In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method.
文摘Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algorithms force a structure in the data instead of discovering one.To avoid false structures in the relations of data,a novel clusterability assessment method called density-based clusterability measure is proposed in this paper.I measures the prominence of clustering structure in the data to evaluate whether a cluster analysis could produce a meaningfu insight to the relationships in the data.This is especially useful in time-series data since visualizing the structure in time-series data is hard.The performance of the clusterability measure is evalu ated against several synthetic data sets and time-series data sets which illustrate that the density-based clusterability measure can successfully indicate clustering structure of time-series data.
文摘Background:To solve the cluster analysis better,we propose a new method based on the chaotic particle swarm optimization(CPSO)algorithm.Methods:In order to enhance the performance in clustering,we propose a novel method based on CPSO.We first evaluate the clustering performance of this model using the variance ratio criterion(VRC)as the evaluation metric.The effectiveness of the CPSO algorithm is compared with that of the traditional particle swarm optimization(PSO)algorithm.The CPSO aims to improve the VRC value while avoiding local optimal solutions.The simulated dataset is set at three levels of overlapping:non-overlapping,partial overlapping,and severe overlapping.Finally,we compare CPSO with two other methods.Results:By observing the comparative results,our proposed CPSO method performs outstandingly.In the conditions of non-overlapping,partial overlapping,and severe overlapping,our method has the best VRC values of 1683.2,620.5,and 275.6,respectively.The mean VRC values in these three cases are 1683.2,617.8,and 222.6.Conclusion:The CPSO performed better than other methods for cluster analysis problems.CPSO is effective for cluster analysis.
文摘The goal of this study was to optimize the constitutive parameters of foundation soils using a k-means algorithm with clustering analysis. A database was collected from unconfined compression tests, Proctor tests and grain distribution tests of soils taken from three different types of foundation pits: raft foundations, partial raft foundations and strip foundations. k-means algorithm with clustering analysis was applied to determine the most appropriate foundation type given the un- confined compression strengths and other parameters of the different soils.
基金This work was supported by National Natural Science Foundation of China(Nos.U1562218,41604107,and 41804126).
文摘Traditional unsupervised seismic facies analysis techniques need to assume that seismic data obey mixed Gaussian distribution.However,fi eld seismic data may not meet this condition,thereby leading to wrong classifi cation in the application of this technology.This paper introduces a spectral clustering technique for unsupervised seismic facies analysis.This algorithm is based on on the idea of a graph to cluster the data.Its kem is that seismic data are regarded as points in space,points can be connected with the edge and construct to graphs.When the graphs are divided,the weights of the edges between the different subgraphs are as low as possible,whereas the weights of the inner edges of the subgraph should be as high as possible.That has high computational complexity and entails large memory consumption for spectral clustering algorithm.To solve the problem this paper introduces the idea of sparse representation into spectral clustering.Through the selection of a small number of local sparse representation points,the spectral clustering matrix of all sample points is approximately represented to reduce the cost of spectral clustering operation.Verifi cation of physical model and fi eld data shows that the proposed approach can obtain more accurate seismic facies classification results without considering the data meet any hypothesis.The computing efficiency of this new method is better than that of the conventional spectral clustering method,thereby meeting the application needs of fi eld seismic data.