期刊文献+
共找到68,624篇文章
< 1 2 250 >
每页显示 20 50 100
Pyrroloquinoline quinone:a potential neuroprotective compound for neurodegenerative diseases targeting metabolism
1
作者 Alessio Canovai Pete A.Williams 《Neural Regeneration Research》 SCIE CAS 2025年第1期41-53,共13页
Pyrroloquinoline quinone is a quinone described as a cofactor for many bacterial dehydrogenases and is reported to exert an effect on metabolism in mammalian cells/tissues.Pyrroloquinoline quinone is present in the di... Pyrroloquinoline quinone is a quinone described as a cofactor for many bacterial dehydrogenases and is reported to exert an effect on metabolism in mammalian cells/tissues.Pyrroloquinoline quinone is present in the diet being available in foodstuffs,conferring the potential of this compound to be supplemented by dietary administration.Pyrroloquinoline quinone’s nutritional role in mammalian health is supported by the extensive deficits in reproduction,growth,and immunity resulting from the dietary absence of pyrroloquinoline quinone,and as such,pyrroloquinoline quinone has been considered as a“new vitamin.”Although the classification of pyrroloquinoline quinone as a vitamin needs to be properly established,the wide range of benefits for health provided has been reported in many studies.In this respect,pyrroloquinoline quinone seems to be particularly involved in regulating cell signaling pathways that promote metabolic and mitochondrial processes in many experimental contexts,thus dictating the rationale to consider pyrroloquinoline quinone as a vital compound for mammalian life.Through the regulation of different metabolic mechanisms,pyrroloquinoline quinone may improve clinical deficits where dysfunctional metabolism and mitochondrial activity contribute to induce cell damage and death.Pyrroloquinoline quinone has been demonstrated to have neuroprotective properties in different experimental models of neurodegeneration,although the link between pyrroloquinoline quinone-promoted metabolism and improved neuronal viability in some of such contexts is still to be fully elucidated.Here,we review the general properties of pyrroloquinoline quinone and its capacity to modulate metabolic and mitochondrial mechanisms in physiological contexts.In addition,we analyze the neuroprotective properties of pyrroloquinoline quinone in different neurodegenerative conditions and consider future perspectives for pyrroloquinoline quinone’s potential in health and disease. 展开更多
关键词 metabolism MITOCHONDRIA neurodegenerative disease NEUROPROTECTION pyrroloquinoline quinone retinal diseases
下载PDF
Liver as a new target organ in Alzheimer's disease:insight from cholesterol metabolism and its role in amyloid-beta clearance
2
作者 Beibei Wu Yuqing Liu +4 位作者 Hongli Li Lemei Zhu Lingfeng Zeng Zhen Zhang Weijun Peng 《Neural Regeneration Research》 SCIE CAS 2025年第3期695-714,共20页
Alzheimer's disease,the primary cause of dementia,is characterized by neuropathologies,such as amyloid plaques,synaptic and neuronal degeneration,and neurofibrillary tangles.Although amyloid plaques are the primar... Alzheimer's disease,the primary cause of dementia,is characterized by neuropathologies,such as amyloid plaques,synaptic and neuronal degeneration,and neurofibrillary tangles.Although amyloid plaques are the primary characteristic of Alzheimer's disease in the central nervous system and peripheral organs,targeting amyloid-beta clearance in the central nervous system has shown limited clinical efficacy in Alzheimer's disease treatment.Metabolic abnormalities are commonly observed in patients with Alzheimer's disease.The liver is the primary peripheral organ involved in amyloid-beta metabolism,playing a crucial role in the pathophysiology of Alzheimer's disease.Notably,impaired cholesterol metabolism in the liver may exacerbate the development of Alzheimer's disease.In this review,we explore the underlying causes of Alzheimer's disease and elucidate the role of the liver in amyloid-beta clearance and cholesterol metabolism.Furthermore,we propose that restoring normal cholesterol metabolism in the liver could represent a promising therapeutic strategy for addressing Alzheimer's disease. 展开更多
关键词 ABCA1 Alzheimer's disease AMYLOID-BETA apolipoprotein E cholesterol metabolism LIVER liver X receptor low-density lipoprotein receptor-related protein 1 peripheral clearance tauroursodeoxycholic acid
下载PDF
Longitudinal assessment of peripheral organ metabolism and the gut microbiota in an APP/PS1 transgenic mouse model of Alzheimer’s disease
3
作者 Hongli Li Jianhua Huang +4 位作者 Di Zhao Lemei Zhu Zheyu Zhang Min Yi Weijun Peng 《Neural Regeneration Research》 SCIE CAS 2025年第10期2982-2997,共16页
Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzhei... Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzheimer’s disease,in particular the association between changes in peripheral organ metabolism,changes in gut microbial composition,and Alzheimer’s disease development.To do this,we analyzed peripheral organ metabolism and the gut microbiota in amyloid precursor protein-presenilin 1(APP/PS1)transgenic and control mice at 3,6,9,and 12 months of age.Twelve-month-old APP/PS1 mice exhibited cognitive impairment,Alzheimer’s disease-related brain changes,distinctive metabolic disturbances in peripheral organs and fecal samples(as detected by untargeted metabolomics sequencing),and substantial changes in gut microbial composition compared with younger APP/PS1 mice.Notably,a strong correlation emerged between the gut microbiota and kidney metabolism in APP/PS1 mice.These findings suggest that alterations in peripheral organ metabolism and the gut microbiota are closely related to Alzheimer’s disease development,indicating potential new directions for therapeutic strategies. 展开更多
关键词 Alzheimer’s disease APP/PS1 mice brain-kidney axis gut microbiota heart-brain axis liver-brain axis lung-brain axis microbiota-gut-brain axis peripheral organ metabolism spleen-brain axis
下载PDF
芝麻过敏原Ses i 2核酸适体的筛选与鉴定研究
4
作者 李洋 于宁 +3 位作者 康文瀚 张九凯 杜欣军 陈颖 《核农学报》 CAS 北大核心 2025年第1期59-67,共9页
芝麻是八大类食物过敏原之一,快速准确识别芝麻过敏原对预防其过敏有重要意义。核酸适配体可以高效识别靶标过敏原,在过敏原检测中有良好的应用前景。为了获得芝麻主要过敏原Ses i 2的特异性核酸适体,本研究以Ses i 2为靶标,通过磁珠筛... 芝麻是八大类食物过敏原之一,快速准确识别芝麻过敏原对预防其过敏有重要意义。核酸适配体可以高效识别靶标过敏原,在过敏原检测中有良好的应用前景。为了获得芝麻主要过敏原Ses i 2的特异性核酸适体,本研究以Ses i 2为靶标,通过磁珠筛选法(磁珠-SELEX)开展10轮筛选,经由高通量测序获得6条候补序列(S1~S6),并进行家族性、同源性分析及二级结构预测。结果表明,6条候选核酸适体的重复率可达46.38%,其自由能在-9.02到-2.47 kcal·moL^(-1)之间,根据自由能能量稳定原则,S1和S5吉布斯自由能最低最稳定,分别为-6.70和-9.02 kcal·moL^(-1)。利用ELISA试验进行亲和力测试,结果表明核酸适体S1和S2的亲和能力较强,S1:KD=67.02 nmol·L^(-1),R2=0.925 8,S2:KD=97.65 nmol·L^(-1),R2=0.795 1。核酸适体S1与过敏原Ses i 2的结合力和其他过敏原蛋白相比有显著差异,可视为具有特异性。本研究最终获得一条兼具良好亲和力和特异性的核酸适体S1,为芝麻过敏原快速检测提供了技术支撑。 展开更多
关键词 芝麻过敏原 ses i 2 核酸适体 亲和力
下载PDF
Copper Metabolism and Cuproptosis:Molecular Mechanisms and Therapeutic Perspectives in Neurodegenerative Diseases 被引量:3
5
作者 Xiao-xia BAN Hao WAN +7 位作者 Xin-xing WAN Ya-ting TAN Xi-min HU Hong-xia BAN Xin-yu CHEN Kun HUANG Qi ZHANG Kun XIONG 《Current Medical Science》 SCIE CAS 2024年第1期28-50,共23页
Copper is an essential trace element,and plays a vital role in numerous physiological processes within the human body.During normal metabolism,the human body maintains copper homeostasis.Copper deficiency or excess ca... Copper is an essential trace element,and plays a vital role in numerous physiological processes within the human body.During normal metabolism,the human body maintains copper homeostasis.Copper deficiency or excess can adversely affect cellular function.Therefore,copper homeostasis is stringently regulated.Recent studies suggest that copper can trigger a specific form of cell death,namely,cuproptosis,which is triggered by excessive levels of intracellular copper.Cuproptosis induces the aggregation of mitochondrial lipoylated proteins,and the loss of iron-sulfur cluster proteins.In neurodegenerative diseases,the pathogenesis and progression of neurological disorders are linked to copper homeostasis.This review summarizes the advances in copper homeostasis and cuproptosis in the nervous system and neurodegenerative diseases.This offers research perspectives that provide new insights into the targeted treatment of neurodegenerative diseases based on cuproptosis. 展开更多
关键词 cuproptosis copper metabolism copper homeostasis NEURODEGENERATION neurodegenerativedisease
下载PDF
Global research trends and prospects of cellular metabolism in colorectal cancer 被引量:1
6
作者 Yan-Chen Liu Zhi-Cheng Gong +3 位作者 Chao-Qun Li Peng Teng Yan-Yan Chen Zhao-Hui Huang 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第2期527-542,共16页
BACKGROUND An increasing number of studies have focused on the role of cellular metabolism in the development of colorectal cancer(CRC).However,no work is currently available to synthesize the field through bibliometr... BACKGROUND An increasing number of studies have focused on the role of cellular metabolism in the development of colorectal cancer(CRC).However,no work is currently available to synthesize the field through bibliometrics.AIM To analyze the development in the field of“glucose metabolism”(GM),“amino acid metabolism”(AM),“lipid metabolism”(LM),and“nucleotide metabolism”(NM)in CRC by visualization.METHODS Articles within the abovementioned areas of GM,AM,LM and NM in CRC,which were published from January 1,1991,to December 31,2022,are retrieved from the Web of Science Core Collection and analyzed by CiteSpace 6.2.R4 and VOSviewer 1.6.19.RESULTS The field of LM in CRC presented the largest number of annual publications and the fastest increase in the last decade compared with the other three fields.Meanwhile,China and the United States were two of the most prominent contri-butors in these four areas.In addition,Gang Wang,Wei Jia,Maria Notar-nicola,and Cornelia Ulrich ranked first in publication numbers,while Jing-Yuan Fang,Senji Hirasawa,Wei Jia,and Charles Fuchs were the most cited authors on average in these four fields,respectively.“Gut microbiota”and“epithelial-mesenchymal transition”emerged as the newest burst words in GM,“gut microbiota”was the latest outburst word in AM,“metastasis”,“tumor microenvironment”,“fatty acid metabolism”,and“metabolic reprogramming”were the up-to-date outbreaking words in LM,while“epithelial-mesenchymal transition”and“apoptosis”were the most recently occurring words in NM.CONCLUSION Research in“cellular metabolism in CRC”is all the rage at the moment,and researchers are particularly interested in exploring the mechanism to explain the metabolic alterations in CRC.Targeting metabolic vulnerability appears to be a promising direction in CRC therapy. 展开更多
关键词 Cellular metabolism Colorectal cancer Glucose metabolism Amino acid metabolism Lipid metabolism Nucleotide metabolism
下载PDF
Lactate metabolism in neurodegenerative diseases 被引量:5
7
作者 Chaoguang Yang Rui-Yuan Pan +1 位作者 Fangxia Guan Zengqiang Yuan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期69-74,共6页
Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signalin... Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signaling molecule to modulate cellular functions under pathophysiological conditions.The Astrocyte-Neuron Lactate Shuttle has cla rified that lactate plays a pivotal role in the central nervous system.Moreover,protein lactylation highlights the novel role of lactate in regulating transcription,cellular functions,and disease development.This review summarizes the recent advances in lactate metabolism and its role in neurodegenerative diseases,thus providing optimal pers pectives for future research. 展开更多
关键词 Alzheimer's disease Astrocyte-Neuron Lactate Shuttle brain central nervous system glucose metabolism GLYCOLYSIS NEUROINFLAMMATION Parkinson's disease protein lactylation signaling molecule
下载PDF
Synergistic effects of carbon cycle metabolism and photosynthesis in Chinese cabbage under salt stress 被引量:1
8
作者 Hao Liang Qiling Shi +8 位作者 Xing Li Peipei Gao Daling Feng Xiaomeng Zhang Yin Lu Jingsen Yan Shuxing Shen Jianjun Zhao Wei Ma 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期461-472,共12页
Chinese cabbage(Brassica rapa ssp. pekinensis) has a long cultivation history and is one of the vegetable crops with the largest cultivation area in China. However, salt stress severely damages photosynthesis and horm... Chinese cabbage(Brassica rapa ssp. pekinensis) has a long cultivation history and is one of the vegetable crops with the largest cultivation area in China. However, salt stress severely damages photosynthesis and hormone metabolism, nutritional balances, and results in ion toxicity in plants. To better understand the mechanisms of salt-induced growth inhibition in Chinese cabbage, RNA-seq and physiological index determination were conducted to explore the impacts of salt stress on carbon cycle metabolism and photosynthesis in Chinese cabbage. Here, we found that the number of thylakoids and grana lamellae and the content of starch granules and chlorophyll in the leaves of Chinese cabbage under salt stress showed a time-dependent response, first increasing and then decreasing. Chinese cabbage increased the transcript levels of genes related to the photosynthetic apparatus and carbon metabolism under salt stress, probably in an attempt to alleviate damage to the photosynthetic system and enhance CO_(2) fixation and energy metabolism. The transcription of genes related to starch and sucrose synthesis and degradation were also enhanced;this might have been an attempt to maintain intracellular osmotic pressure by increasing soluble sugar concentrations. Soluble sugars could also be used as potential reactive oxygen species(ROS) scavengers, in concert with peroxidase(POD)enzymes, to eliminate ROS that accumulate during metabolic processes. Our study characterizes the synergistic response network of carbon metabolism and photosynthesis under salt stress. 展开更多
关键词 Chinese cabbage Salt stress Carbon metabolism PHOTOSYNTHESIS CHLOROPLAST
下载PDF
Fecal microbiota transplantation:whole grain highland barley improves glucose metabolism by changing gut microbiota 被引量:1
9
作者 Xin Ren Fulong Zhang +3 位作者 Min Zhang Yuan Fang Zenglong Chen Meili Huan 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2014-2024,共11页
Highland barley(HB)is a high-altitude cereal with rich nutritional components and potential health benefits.To clarify its hypoglycemic effect and mechanism,we investigated the effect of whole grain HB and fecal micro... Highland barley(HB)is a high-altitude cereal with rich nutritional components and potential health benefits.To clarify its hypoglycemic effect and mechanism,we investigated the effect of whole grain HB and fecal microbiota transplantation(FMT)on glucose metabolism and gut microbiota in high-fat diet and streptozotocin(HFD/STZ)-induced diabetic mice.The results showed that HB(40%)significantly decreased fasting blood glucose and the area under the glucose tolerance curve,significantly increased insulin secretion and improved insulin resistance in HFD/STZ-induced diabetic mice(P<0.05).Inflammatory factors and blood lipid indices were also significantly alleviated after 12 weeks of 40%HB intervention(P<0.05).Additionally,beneficial bacteria,such as Bifidobacterium and Akkermansia,were significantly enriched in the gut of diabetic mice after whole grain HB intervention.Meanwhile,the results of further FMT experiments verified that the fecal microbiota after the 40%HB intervention not only significantly increased the relative abundance of Bifidobacterium and Akkermansia but also effectively improved glucose metabolism and alleviated the inflammatory state in HFD/STZ-induced diabetic mice.Collectively,our study confirmed the bridge role of gut microbiota in improving glucose metabolism of whole grain HB,which could promote the development of precision nutrition. 展开更多
关键词 Highland barley DIABETES Glucose metabolism Gut microbiota Fecal bacteria transplantation
下载PDF
Research progress of ferroptosis regulating lipid peroxidation and metabolism in occurrence and development of primary liver cancer 被引量:1
10
作者 Yu-Jie Shu Bo Lao Ying-Yang Qiu 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第6期2335-2349,共15页
As a highly aggressive tumor,the pathophysiological mechanism of primary liver cancer has attracted much attention.In recent years,factors such as ferroptosis regulation,lipid peroxidation and metabolic abnormalities ... As a highly aggressive tumor,the pathophysiological mechanism of primary liver cancer has attracted much attention.In recent years,factors such as ferroptosis regulation,lipid peroxidation and metabolic abnormalities have emerged in the study of liver cancer,providing a new perspective for understanding the development of liver cancer.Ferroptosis regulation,lipid peroxidation and metabolic abnormalities play important roles in the occurrence and development of liver cancer.The regulation of ferroptosis is involved in apoptosis and necrosis,affecting cell survival and death.Lipid peroxidation promotes oxidative damage and promotes the invasion of liver cancer cells.Metabolic abnormalities,especially the disorders of glucose and lipid metabolism,directly affect the proliferation and growth of liver cancer cells.Studies of ferroptosis regulation and lipid peroxidation may help to discover new therapeutic targets and improve therapeutic outcomes.The understanding of metabolic abnormalities can provide new ideas for the prevention of liver cancer,and reduce the risk of disease by adjusting the metabolic process.This review focuses on the key roles of ferroptosis regulation,lipid peroxidation and metabolic abnormalities in this process. 展开更多
关键词 Ferroptosis Lipid peroxidation Primary liver cancer Lipid metabolism REVIEW
下载PDF
Ethylene accelerates maize leaf senescence in response to nitrogen deficiency by regulating chlorophyll metabolism and autophagy 被引量:1
11
作者 Jiapeng Xing Ying Feng +3 位作者 Yushi Zhang Yubin Wang Zhaohu Li Mingcai Zhang 《The Crop Journal》 SCIE CSCD 2024年第5期1391-1403,共13页
Leaf senescence is an orderly and highly coordinated process,and finely regulated by ethylene and nitrogen(N),ultimately affecting grain yield and nitrogen-use efficiency(NUE).However,the underlying regulatory mechani... Leaf senescence is an orderly and highly coordinated process,and finely regulated by ethylene and nitrogen(N),ultimately affecting grain yield and nitrogen-use efficiency(NUE).However,the underlying regulatory mechanisms on the crosstalk between ethylene-and N-regulated leaf senescence remain a mystery in maize.In this study,ethylene biosynthesis gene ZmACS7 overexpressing(OE-ZmACS7)plants were used to study the role of ethylene regulating leaf senescence in response to N deficiency,and they exhibited the premature leaf senescence accompanied by increased ethylene release,decreased chlorophyll content and F_v/F_m ratio,and accelerated chloroplast degradation.Then,we investigated the dynamics changes of transcriptome reprogramming underlying ethylene-accelerated leaf senescence in response to N deficiency.The differentially expressed genes(DEGs)involved in chlorophyll biosynthesis were significantly down-regulated,while DEGs involved in chlorophyll degradation and autophagy processes were significantly up-regulated,especially in OE-ZmACS7 plants in response to N deficiency.A gene regulatory network(GRN)was predicted during ethylene-accelerated leaf senescence in response to N deficiency.Three transcription factors(TFs)ZmHSF4,Zmb HLH106,and ZmEREB147 were identified as the key regulatory genes,which targeted chlorophyll biosynthesis gene ZmLES22,chlorophyll degradation gene ZmNYC1,and autophagy-related gene ZmATG5,respectively.Furthermore,ethylene signaling key genes might be located upstream of these TFs,generating the signaling cascade networks during ethylene-accelerated leaf senescence in response to N deficiency.Collectively,these findings improve our molecular knowledge of ethylene-accelerated maize leaf senescence in response to N deficiency,which is promising to improve NUE by manipulating the progress of leaf senescence in maize. 展开更多
关键词 ETHYLENE Leaf senescence N deficiency Chlorophyll metabolism AUTOPHAGY Gene regulatory network
下载PDF
Hepatoprotective effects of Xiaoyao San formula on hepatic steatosis and inflammation via regulating the sex hormones metabolism 被引量:3
12
作者 Xiao-Li Mei Shu-Yi Wu +4 位作者 Si-Lan Wu Xiao-Lin Luo Si-Xing Huang Rui Liu Zhe Qiang 《World Journal of Hepatology》 2024年第7期1051-1066,共16页
BACKGROUND The modified Xiaoyao San(MXS)formula is an adjuvant drug recommended by the National Health Commission of China for the treatment of liver cancer,which has the effect of preventing postoperative recurrence ... BACKGROUND The modified Xiaoyao San(MXS)formula is an adjuvant drug recommended by the National Health Commission of China for the treatment of liver cancer,which has the effect of preventing postoperative recurrence and metastasis of hepatocellular carcinoma and prolonging patient survival.However,the molecular mechanisms underlying that remain unclear.AIM To investigate the role and mechanisms of MXS in ameliorating hepatic injury,steatosis and inflammation.METHODS A choline-deficient/high-fat diet-induced rat nonalcoholic steatohepatitis(NASH)model was used to examine the effects of MXS on lipid accumulation in primary hepatocytes.Liver tissues were collected for western blotting and immunohisto chemistry(IHC)assays.Lipid accumulation and hepatic fibrosis were detected using oil red staining and Sirius red staining.The serum samples were collected for biochemical assays and NMR-based metabonomics analysis.The inflammation/lipid metabolism-related signaling and regulators in liver tissues were also detected to reveal the molecular mechanisms of MXS against NASH.RESULTS MXS showed a significant decrease in lipid accumulation and inflammatory response in hepatocytes under metabolic stress.The western blotting and IHC results indicated that MXS activated AMPK pathway but inhibited the expression of key regulators related to lipid accumulation,inflammation and hepatic fibrosis in the pathogenesis of NASH.The metabonomics analysis systemically indicated that the arachidonic acid metabolism and steroid hormone synthesis are the two main target metabolic pathways for MXS to ameliorate liver inflammation and hepatic steatosis.Mechanistically,we found that MXS protected against NASH by attenuating the sex hormone-related metabolism,especially the metabolism of male hormones.CONCLUSION MXS ameliorates inflammation and hepatic steatosis of NASH by inhibiting the metabolism of male hormones.Targeting male hormone related metabolic pathways may be the potential therapeutic approach for NASH. 展开更多
关键词 Hepatic steatosis INFLAMMATION sex hormone metabolism Male hormone Phosphatase and tensin homolog deleted on chromosome ten
下载PDF
S空位及非金属掺杂单层Bi_(2)S_(2)Se的第一性原理研究
13
作者 张建华 王敏 +2 位作者 陈畅 曹倩 徐银 《原子与分子物理学报》 CAS 北大核心 2025年第1期127-134,共8页
Bi_(2)S_(2)Se是一种新兴的具有优异光电性能的材料,因此受到了广泛的关注.本研究采用第一性原理方法和开源程序,研究了本征单层Bi_(2)S_(2)Se以及掺杂非金属元素X(X=P,Cl,Br和I)和S空位的体系的电子结构和光学特性.计算结果表明,改性... Bi_(2)S_(2)Se是一种新兴的具有优异光电性能的材料,因此受到了广泛的关注.本研究采用第一性原理方法和开源程序,研究了本征单层Bi_(2)S_(2)Se以及掺杂非金属元素X(X=P,Cl,Br和I)和S空位的体系的电子结构和光学特性.计算结果表明,改性后出现了晶格缺陷.含S空位和P、Cl、Br掺杂体系的带隙减少,而I掺杂体系的带隙增加.同时,含S空位和Cl、Br、I掺杂体系的费米能级穿过导带底,而P掺杂体系的费米能级穿过价带顶.所有改性体系在费米能级附近都出现了缺陷能级或杂质能级,表现出较高的可见光吸收能力和散射能力,改性体系的对可见光的吸收能力和散射能力有所增加. 展开更多
关键词 Bi_(2)S_(2)se 掺杂 电子结构 光学性质 第一性原理
下载PDF
Current and future research directions in cellular metabolism of colorectal cancer:A bibliometric analysis
14
作者 Bo-Wen Jiang Xiu-Hua Zhang +2 位作者 Rui Ma Wen-Yu Luan Yan-Dong Miao 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第8期3732-3737,共6页
The primary aim of this study was to analyze the evolving trends and key focal points in research on cellular metabolism of colorectal cancer(CRC).Relevant publications on cellular metabolism in CRC were sourced from ... The primary aim of this study was to analyze the evolving trends and key focal points in research on cellular metabolism of colorectal cancer(CRC).Relevant publications on cellular metabolism in CRC were sourced from the Science Citation Index Expanded within the Web of Science Core Collection database.Bibliometric analysis and visualization were conducted using VOSviewer(version 1.6.18)software and CiteSpace 6.1.R6(64-bit)Basic.A comprehensive compilation of 4722 English-language publications,covering the period from January 1,1991 to December 31,2022,was carefully identified and included in the analysis.Among the authors,“Ogino,Shuji”contributed the most publications in this field,while“Giovannucci,E”garnered the highest number of citations.The journal“Cancer Research”ranked first in both publication volume and citations.Institutionally,“Shanghai Jiao Tong University”emerged as the top contributor in terms of published articles,while“Harvard University”led in citation impact.In country-based analysis,the United States held the top position in both publication output and citations,closely followed by China.The increasing recognition of the significance of cellular metabolism in CRC underscores its potential for novel therapeutic approaches aimed at improving CRC management and prognosis. 展开更多
关键词 Cellular metabolism Colorectal cancer Bibliometric analysis Metabolic reprogramming Cellular metabolism
下载PDF
Mepiquat chloride increases the Cry1Ac protein content of Bt cotton under high temperature and drought stress by regulating carbon and amino acid metabolism
15
作者 Dian Jin Yuting Liu +7 位作者 Zhenyu Liu Yuyang Dai Jianing Du Run He Tianfan Wu Yuan Chen Dehua Chen Xiang Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第12期4032-4045,共14页
The effects of mepiquat chloride(DPC)on the Cry1Ac protein content in Bacillus thuringiensis(Bt)cotton boll shells under high temperature and drought stress were investigated to provide a theoretical reference for Bt ... The effects of mepiquat chloride(DPC)on the Cry1Ac protein content in Bacillus thuringiensis(Bt)cotton boll shells under high temperature and drought stress were investigated to provide a theoretical reference for Bt cotton breeding and high-yield and-efficiency cotton cultivation.This study was conducted using Bt cotton cultivar‘Sikang 3'during the 2020 and 2021 growing seasons at Yangzhou University Farm,Yangzhou,Jiangsu Province,China.Potted cotton plants were exposed to high temperature and drought stress,and sprayed with either 20 mg L^(-1)DPC or water(CK).Seven days after treatment,the Cry1Ac protein content,α-ketoglutarate content,pyruvic acid content,glutamate synthase activity,glutamic oxaloacetic transaminase activity,soluble protein content,and amino acid content were measured,and transcriptome sequencing was performed.DESeq was used for differential gene analysis.Under the DPC treatment,the Cry1Ac protein content increased by 4.7-11.9% compared to CK.Theα-ketoglutarate content,pyruvic acid content,glutamate synthase activity,glutamic oxaloacetic transaminase activity,soluble protein content,and amino acid content all increased.Transcriptome analysis revealed 7,542 upregulated genes and 10,449 downregulated genes for DPC vs.CK.Gene ontology(GO)and Kyoto Encyclopedia of Gene and Genomes(KEGG)analyses showed that the differentially expressed genes were mainly involved in biological processes,such as carbon and amino acid metabolism.For example,genes encoding 6-phosphofructokinase,pyruvate kinase,glutamic pyruvate transaminase,pyruvate dehydrogenase,citrate synthase,isocitrate dehydrogenase,2-oxoglutarate dehydrogenase,glutamate synthase,1-pyrroline-5-carboxylate dehydrogenase,glutamic oxaloacetic transaminase,amino-acid N-acetyltransferase,and acetylornithine deacetylase were all significantly upregulated.The DPC treatment increased pyruvate,α-ketoglutarate,and oxaloacetate by increasing the operational rate of the glycolytic pathway of the citric acid cycle.It also significantly upregulated the genes encoding glutamate synthase,pyrrolidine-5-carboxylic acid dehydrogenase,glutamate oxaloacetate transaminase,and N-acetylglutamate synthetase,while it downregulated the genes encoding glutamine synthetase.Therefore,the synthesis of aspartic acid,glutamic acid,pyruvate,and arginine increased after treatment with DPC,and the Cry1Ac protein content was increased by regulating carbon and amino acid metabolism. 展开更多
关键词 amino acid metabolism Bt cotton carbon metabolism Cry1Ac protein mepiquat chloride
下载PDF
Glycolysis and glucose metabolism as a target for bioenergetic and neuronal protection in glaucoma
16
作者 Pete A.Williams Robert J.Casson 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1637-1638,共2页
Vision is arguably our most valued sense,yet approximately 340 million people globally suffer blindness or moderate visual impairment,highlighting the need to further develop and advance treatments for ophthalmic dise... Vision is arguably our most valued sense,yet approximately 340 million people globally suffer blindness or moderate visual impairment,highlighting the need to further develop and advance treatments for ophthalmic diseases.Glaucoma refers to a group of ocular disorders united by a clinically characteristic optic neuropathy with associated retinal ganglion cell loss. 展开更多
关键词 metabolism GLAUCOMA globally
下载PDF
Inflammation-related iron metabolism disorders and anemia in patients with anti-glomerular basement membrane disease without overt bleeding:a case report
17
作者 Ping Gong Fang Chen +2 位作者 Yonggang Gui Yanfen Chai Yi Jiang 《World Journal of Emergency Medicine》 SCIE CAS CSCD 2024年第6期505-507,共3页
Anti-glomerular basement membrane(anti-GBM)disease is a rare small vessel vasculitis representing the most aggressive form of autoimmune glomerulonephritis.[1,2]Its overall incidence ranges from 0.60 to 1.79 per milli... Anti-glomerular basement membrane(anti-GBM)disease is a rare small vessel vasculitis representing the most aggressive form of autoimmune glomerulonephritis.[1,2]Its overall incidence ranges from 0.60 to 1.79 per million population annually.[1]Anti-GBM disease is mediated by abnormal anti-GBM antibody production,which mainly targets GBM and thus contributes to rapid progressive glomerulonephritis with a distinctive pattern of diffuse crescentic formation in the glomeruli. 展开更多
关键词 metabolism glomerular ANEMIA
下载PDF
Effects of alcohol on digestion,absorption and metabolism of sea cucumber saponins in healthy mice
18
作者 Wenxian Dang Rong Li +4 位作者 Jinyue Yang Changhu Xue Qingrong Huang Yuming Wang Tiantian Zhang 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期137-145,共9页
Sea cucumber saponins have attracted more attention in recent years due to biological activities.It is a popular practice to soak sea cucumber in Baijiu at home and being applied to industrial manufacturing in China.H... Sea cucumber saponins have attracted more attention in recent years due to biological activities.It is a popular practice to soak sea cucumber in Baijiu at home and being applied to industrial manufacturing in China.However,knowledge of the effect of alcohol on the absorption and metabolism of sea cucumber saponins is limited.The effects of alcohol on digestion,absorption and metabolism of sea cucumber saponins in BALB/c mice were investigated after gavage and tail intravenous injection.The results showed that the content of saponins in serum and liver was significantly higher under the influence of alcohol than that in the control group after oral administration.Alcohol promoted the absorption of sea cucumber saponins prototype as well as inhibited the process of saponins being transformed into deglycositic metabolites in the small intestine.Moreover,sea cucumber saponins remained in circulation for a long time and alcohol slowed down the clearance of sea cucumber saponins under the influence of alcohol after intravenous injection.This confirmed the feasibility of marinating sea cucumber in Baijiu to improve the efficacy of saponins and provides an important theoretical basis for the utilization of sea cucumber and the development of sea cucumber liquor. 展开更多
关键词 Holothurin A Echinoside A ALCOHOL ABSORPTION metabolism
下载PDF
Arginine promotes seed energy metabolism,increasing wheat seed germination at low temperature
19
作者 Jiayu Li Zhiyuan Li +3 位作者 Yangyang Tang Jianke Xiao Vinay Nangia Yang Liu 《The Crop Journal》 SCIE CSCD 2024年第4期1185-1195,共11页
Low temperatures during germination inhibit seed growth,lead to small and weak seedlings,and significantly reduce the wheat yield.Alleviating the adverse effects of low temperature on wheat seed germination is highly ... Low temperatures during germination inhibit seed growth,lead to small and weak seedlings,and significantly reduce the wheat yield.Alleviating the adverse effects of low temperature on wheat seed germination is highly important for achieving high and stable wheat yields.In this study,Tongmai 6(insensitive)and Zhengmai 113(sensitive),which have different low-temperature sensitivities during germination were treated with low temperature during germination.The transcriptome,metabolome and physiological data revealed that low temperature decreased the germination rate,downregulated the expression of a large number of genes involved in regulating glycometabolism,and inhibited carbon,nitrogen(especially amino acids)and energy metabolism in the seeds.Arginine content increased at low temperature,and its increase in the low-temperature-tolerant variety was significantly greater than that in the sensitive variety.Arginine priming experiment showed that treatment with an appropriate concentration of arginine improved the seed germination rate.The conversion of starch to soluble sugar significantly increased under exogenous arginine conditions,the content of key metabolites in energy metabolism increased,and the utilization of ATP in the seeds increased.Taken together,arginine priming increased seed germination at low temperature by relieving inhibition of seed carbon and nitrogen metabolism and improving seed energy metabolism. 展开更多
关键词 Low temperature seed germination ARGININE Energy metabolism WHEAT
下载PDF
Effects of Poria cocos polysaccharide on growth performance,physiological parameters,and lipid metabolism of spotted sea bass Lateolabrax maculatus
20
作者 Jing LU Zhangfan HUANG +2 位作者 Youling YE Anle XU Zhongbao LI 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期316-331,共16页
The aquaculture industry has developed significantly over the past few decades and has had a substantial impact on the global food supply and marine fisheries resources.However,some problems arise behind the scenes du... The aquaculture industry has developed significantly over the past few decades and has had a substantial impact on the global food supply and marine fisheries resources.However,some problems arise behind the scenes due to excessive intensive farming,such as slow animal growth,frequent disease,and lipid metabolism disorders.These problems have limited the sustainable development of the aquaculture industry,and a continuable solution is required.The use of fungal polysaccharide appears to provide a solution to these problems.Therefore,different supplemented levels of Poria cocos polysaccharide(PCP)(0,0.4,0.8,1.2,1.6,and 2.0 g/kg,respectively)were fed to spotted sea bass(Lateolabrax maculatus)in similar size(30.28±0.18 g)in current study.The effects of PCP on growth,physiological parameters,and lipid metabolism of spotted sea bass were investigated after a 4-week rearing period.Results showed,fish with PCP intake presented a significantly higher weight gain,specific growth rate,and a significantly lower feed conversion ratio.Significantly higher trypsin activity in liver and intestine were observed in fish with PCP intake.The superoxide dismutase activity in serum and liver of fish with PCP intake were significantly improved,while significantly higher serum total antioxidant capacity and hepatic catalase activity were also observed.However,no significant differences in lysozyme and alkaline phosphatase activity were evident among groups.Fish with PCP intake showed a significantly lower total cholesterol,but no noteworthy change in triglyceride and lipid-metabolismrelated genes expression were observed among groups.Results indicated that intake of PCP has a positive effect on growth and antioxidant capacity of spotted sea bass,but seems to have a limited effect on the non-specific immunity and lipid metabolism of spotted sea bass.Based on the regression analysis results,1.4 g/kg of PCP is the optimal dose for spotted sea bass in size(30.28±0.18 g). 展开更多
关键词 spotted sea bass Poria cocos POLYSACCHARIDE GROWTH lipid metabolism
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部