The additions of straw and biochar have been suggested to increase soil fertility, carbon sequestration, and crop produc- tivity of agricultural lands. To our knowledge, there is little information on the effects of s...The additions of straw and biochar have been suggested to increase soil fertility, carbon sequestration, and crop produc- tivity of agricultural lands. To our knowledge, there is little information on the effects of straw and biochar addition on soil nitrogen form, carbon storage, and super rice yield in cold waterlogged paddy soils. We performed field trials with four treatments including conventional fertilization system (CK), straw amendment 6 t ha^-1 (S), biochar amendment 2 t ha^-1 (C1), and biochar amendment 40 t ha^-1 (C2). The super japonica rice variety, Shennong 265, was selected as the test Crop. The results showed that the straw and biochar amendments improved total nitrogen and organic carbon content of the soil, reduced N2O emissions, and had little influence on nitrogen retention, nitrogen density, and CO2 emissions. The S and C1 increased NH4^+-N content, and C2 increased NO3^--N content. Both S and C1 had little influence on soil organic carbon density (SOCD) and C/N ratio. However, C2 greatly increased SOCD and C/N ratio. C1 and C2 significantly improved the soil carbon sequestration (SCS) by 62.9 and 214.0% (P〈0.05), respectively, while S had no influence on SCS. C1 and C2 maintained the stability of super rice yield, and significantly reduced CH4 emissions, global warming potential (GWP), and greenhouse gas intensity (GHGI), whereas S had the opposite and negative effects. In summary, the biochar amendments in cold waterlogged paddy soils of North China increased soil nitrogen and carbon content, improved soil carbon sequestration, and reduced GHG emission without affecting the yield of super rice.展开更多
Whether the biochar amendment could affect soil organic matter (SOM) turnover and hence soil carbon (C) stock remains poorly understood. Effects of the addition of ^13C-labelled rice straw or its pyrolysed biochar...Whether the biochar amendment could affect soil organic matter (SOM) turnover and hence soil carbon (C) stock remains poorly understood. Effects of the addition of ^13C-labelled rice straw or its pyrolysed biochar at 250 or 350℃ to a sugarcane soil (Ferrosol) on soil labile C (dissolved organic C, DOC; microbial biomass C, MBC; and mineralizable C, MC) and soil organic C (SOC) were investigated after 112 d of laboratory incubation at 25℃. Four treatments were examined as (1) the control soil without amendment (Soil); (2) soil plus ^13C-labelled rice straw (Soil+Straw); (3) soil plus 250℃ biochar (Soil+B250) and (4) soil plus 350℃biochar (Soil+B350). Compared to un-pyrolysed straw, biochars generally had an increased aryl C, carboxyl C, C and nitrogen concentrations, a decreased O-alkyl C and C:N ratio, but similar alkyl C and δ^13C (1 742- 1 877 %). Among treatments, significant higher DOC, MBC and MC derived from the new C (straw or biochar) ranked as Soil+Straw〉Soil+B250〉Soil+B350, whilst significant higher SOC from the new C as Soil+B250〉Soil+Straw≈Soil+B350. Compared to Soil, DOC and MBC derived from the native soil were decreased under straw or biochar addition, whilst MC from the native soil was increased under straw addition but decreased under biochar addition. Meanwhile, native SOC was similar among the treatments, irrespective of the straw or biochar addition. Compared to Soil, significant higher total DOC and total MBC were under Soil+Straw, but not under Soil+B250 and Soil+B350, whilst significant higher total MC and total SOC were under straw or biochar addition, except for MC under Soil+B350. Our results demonstrated that the application of biochar to soil may be an appropriate management practice for increasing soil C storage.展开更多
Sustainable rice production in Sierra Leone faces serious constraints due to soil acidity, low cation exchange capacity, low nutrient contents accelerated mineralization of soil organic matter and soil loss by erosion...Sustainable rice production in Sierra Leone faces serious constraints due to soil acidity, low cation exchange capacity, low nutrient contents accelerated mineralization of soil organic matter and soil loss by erosion (particularly on the uplands). One possible approach to addressing the soil constraints to rice production both on uplands and lowlands of Sierra Leone is the recycling of rice residues through biochar production and application to soils. A pot experiment was conducted to investigate the effects of application of biochar from rice residues on (i) soil physicochemical properties and (ii) the early growth characteristics of two rice varieties, NERICA L19 and ROK3. The experiment was arranged in a completely randomized design (CRD) with two biochar levels (0 and 15 g/kg soil) and two rice varieties in three replications. For the biochar treated soils (+biochar), 75 g rice straw biochar was applied to 5 kg air-dry soil (15 kg biochar/kg soil), mixed thoroughly and placed into perforated black polythene bags. Seeds of two rice varieties, NERICA L19 and ROK3 were planted on the treated and untreated soils for eight weeks. Application of biochar improved available phosphorus, exchangeable cations and cation exchange capacity in biochar treated soils compared to the control soil without biochar. Plant height, tiller number, and dry biomass weight of both rice varieties grown in soils amended with rice straw biochar were significantly higher than those on untreated soils. The most remarkable increase in plant growth characteristics as a result of biochar addition to soil was reflected in the biomass yield and tiller numbers. Dry shoot biomass for ROK3 rice variety varied significantly from a mean of 3.5 g (control) to 26.2 g (+biochar) while tiller numbers significantly varied from 10 (control) to 29.6 (+biochar). Similarly, for NERICA L19 rice variety, dry shoot biomass increased significantly from 4.5 g (control) to 22.7 g (+biochar) while tiller numbers increased significantly from a mean of 12.3 (control) to 30 (+biochar). Thus converting rice residues to biochar and applying to soil holds promise for improving rice production in Sierra Leone.展开更多
[Objectives]In order to explore the feasibility of using straw and biochar returned to the soil to improve soil physical properties and pH value in cold rice regions of China.[Methods]the effects of straw directly ret...[Objectives]In order to explore the feasibility of using straw and biochar returned to the soil to improve soil physical properties and pH value in cold rice regions of China.[Methods]the effects of straw directly returned to the soil and charred straw(biochar)returned to the soil on soil bulk density,porosity,temperature and pH value of cold paddy soil were studied in this paper.[Results]The results showed that compared with conventional production,straw(6 t/ha),a small amount of biochar(2 t/ha)and a large amount of biochar(40 t/ha)returned to the soil reduced paddy soil bulk density at different growth stages by 6.02%-11.86%,2.69%-6.67%and 8.58%-11.32%,respectively,increased total porosity by 7.41%-14.93%,3.19%-8.38%and 9.81%-14.27%,respectively,and increased aeration porosity by 22.28%-192.11%,17.80%-92.11%and 52.44%-157.11%,respectively.Straw and a small amount of biochar returned to the soil had no significant effect on soil temperature and pH value of paddy field,but a large amount of biochar returned to the soil could significantly increase soil temperature by 5.13%-8.79%and pH value by 3.15%-5.96%in the later stage of rice growth.[Conclusions]The straw and biochar returned to the soil could reduce soil bulk density,increase total porosity and aeration porosity,and only a large amount of biochar returned to the soil could significantly increase soil temperature and pH value.展开更多
The aim of this study is to investigate the effect of different additives including biochar, effective micro-organisms (EM), animal manure and commercial microbial inoculants on the bioconversion of rice straw. Differ...The aim of this study is to investigate the effect of different additives including biochar, effective micro-organisms (EM), animal manure and commercial microbial inoculants on the bioconversion of rice straw. Different compost piles were constructed, and each contained 50 kg of rice straw and mixture of natural rocks to enrich the compost nutritional value. The physical, chemical and biological parameters indicating the decomposition of organic material, maturation and quality of the organic fertilizer product were investigated during the composting process. A rapid increase in compost temperature was obtained in inoculated piles. All piles reached maturation after around 42 days. All analysis of the properties of the final compost products indicated that it was in the range of the matured level and can be used as organic fertilizer without limitation. The highest decomposition rate and highest organic fertilizer quality were obtained in the pile inoculated with EM and 10% biochar compared to other treatments.展开更多
To study the effects of straw utilization methods on dry matter production and yield of japonica rice in northern China,taking the super japonica rice Shennong 265 as the test material,using the planting method of see...To study the effects of straw utilization methods on dry matter production and yield of japonica rice in northern China,taking the super japonica rice Shennong 265 as the test material,using the planting method of seedling transplanting,setting four treatments,namely,the conventional production,directly returning straws to field(6 t/ha),returning straws to field at low amount of biochar(2 t/ha)and returning straws to field at high amount of biochar(40 t/ha),this paper analyzed the changes in production and yield of super japonica rice Shennong265.According to the experimental results,compared with the conventional production,after the straws were directly returned to the field,the dry matter accumulation of japonica rice was insufficient,and the leaf output rate and contribution rate were significantly reduced by 41.19%and 34.69%,respectively;the number of filled grains per panicle,1000-grain weight,and panicles per plant showed negative effect,leading to a decline in the yield;under the condition of returning straws to field at high amount of biochar,the dry matter accumulation showed a decline trend,both the leaf and stem sheath significantly reduced by 21.41%and 17.43%,and the number of filled grains per panicle also declined;under the condition of returning straws to field at low amount of biochar,the dry matter accumulation increased,and the leaf contribution rate increased by 11.68%,the number of filled grains per panicle,1000-grain weight,and panicles per plant showed positive effect,showing the potential of yield increase.In conclusion,returning suitable straw biochar to field(2 t/ha)is favorable for promoting the japonica rice production in northern China.展开更多
Rice is the prominent food grain required by more than half of the world's population to fulfill their nutritional demand.With the continuous growth in the population at the global level,rice production has also b...Rice is the prominent food grain required by more than half of the world's population to fulfill their nutritional demand.With the continuous growth in the population at the global level,rice production has also been elevated.However,high rice production also creates a new problem in waste management worldwide.Rice straw,generated after rice harvest,possesses meager nutritional value,due to which it is less preferred as fodder and burned in the field.Paddy burning is one of the major causes of air pollution,leading to lung,heart,eye,and skin-related diseases and even premature death.This stubble burning also decreases soil fertility.In this review article,we have discussed the various economic uses of paddy straw which will help to reduce air pollution through the decline in paddy straw burning.Biochar is produced from paddy straw,which can be mixed into the soil to restore fertility and reduce toxic metals'bioavailability.The generation of biofuels such as biobutanol,bioethanol,and biogas from rice straw with their mechanism of synthesis is also discussed in this article.Rice straw can also be utilized in the preparation of solid fuel.Along with this,mushroom cultivation in paddy straw houses is also described.Paddy straw can be used for the pulp and paper industries,which will help to reduce the tree dependence of these industries.Apart from this,a bibliometric analysis of the Scopus database on rice straw uses for the last 20 years was done,including a bibliographic keyword analysis to show published documents'trends.This review will give an elaborated overview of the alternative uses of rice straw with a quantitative analysis of air pollution caused by paddy straw burning.This review will also help to improve the current uses of paddy straw for industrial and commercial benefits to make it more economical.展开更多
Icing of wind turbine blades will seriously hinder the development of the wind power industry,and the use of biomass resources to solve the icing problem is conducive to promoting the synergistic development of biomas...Icing of wind turbine blades will seriously hinder the development of the wind power industry,and the use of biomass resources to solve the icing problem is conducive to promoting the synergistic development of biomass and wind energy.In this study,ice-phobic coatings with photothermal and anti-corrosion properties were prepared by surface modification pyrolysis and hydrothermal reaction with rice straw biogas residue as raw material.The erosion of KOH and the surface modification of MoS_(2) produced a rough structure of the material,and the high-temperature pyrolysis and hydrothermal reaction promoted the dehydrogenation and decarboxylation reactions,which reduced the number of oxygen-containing functional groups and decreased the surface energy of the material.The ice-phobic coating has superhydrophobic properties with a contact angle of 158.32°.Due to the small surface area in contact with water,the coating was able to significantly reduce the icing adhesion strength to 53.23 kPa.The icing wind tunnel test results showed that the icing area and mass were reduced by 10.54%and 30.08%,respectively,when the wind speed was 10 m s^(−1) and the temperature was−10°C.Photothermal performance tests showed that the MoS_(2)-loaded material had light absorption properties,and the coating could rapidly warm up to 58.3℃under xenon lamp irradiation with photothermal cycle stability.The loading of MoS_(2) acts as a physical barrier,reducing the contact of corrosive media with the substrate,thus improving the anti-corrosion of the coating.This study has practical application value and significance for the development of the anti-icing field under complex environmental conditions.展开更多
Returning biochar to soil is a heavily researched topic because biochar functions well for soil improvement. There is a significant loss of nutrients, which occurs during biochar preparation before biochar is returned...Returning biochar to soil is a heavily researched topic because biochar functions well for soil improvement. There is a significant loss of nutrients, which occurs during biochar preparation before biochar is returned to soil,thereby seriously undermining biochar's efficacy. Therefore, the transformation mechanisms of biochar p H,mass, nutrients and metals during pyrolysis under different atmospheres and temperatures were studied such that the best method for biochar preparation could be developed. Several conclusions can be reached:(1) a CO2 atmosphere is better than a N2 atmosphere for biochar preparation, although preparation in a CO2 atmosphere is not a common practice for biochar producers;(2) 350 ℃is the best temperature for biochar preparation because the amount of nutrient loss is notably low based on the premise of straw transferred into biochar; and(3) transforming mechanisms of pH, N, P and K are also involved in the biochar preparation process.展开更多
基金supported by the Science and Technology Consulting Program of Chinese Academy of Engineering(2015-XY-25)the Key Technologies R&D Program of China during the 12th Five-Year Plan period(2014BAD02B06-02)+2 种基金the Special Fund for Agro-scientific Research in Public Interest of China(201303095)the Basic Research Foundation of Shenyang Science and Technology Program,China(F16-205-1-38)the Program for Changjiang Scholars and Innovative Research Team in University,China(IRT13079)
文摘The additions of straw and biochar have been suggested to increase soil fertility, carbon sequestration, and crop produc- tivity of agricultural lands. To our knowledge, there is little information on the effects of straw and biochar addition on soil nitrogen form, carbon storage, and super rice yield in cold waterlogged paddy soils. We performed field trials with four treatments including conventional fertilization system (CK), straw amendment 6 t ha^-1 (S), biochar amendment 2 t ha^-1 (C1), and biochar amendment 40 t ha^-1 (C2). The super japonica rice variety, Shennong 265, was selected as the test Crop. The results showed that the straw and biochar amendments improved total nitrogen and organic carbon content of the soil, reduced N2O emissions, and had little influence on nitrogen retention, nitrogen density, and CO2 emissions. The S and C1 increased NH4^+-N content, and C2 increased NO3^--N content. Both S and C1 had little influence on soil organic carbon density (SOCD) and C/N ratio. However, C2 greatly increased SOCD and C/N ratio. C1 and C2 significantly improved the soil carbon sequestration (SCS) by 62.9 and 214.0% (P〈0.05), respectively, while S had no influence on SCS. C1 and C2 maintained the stability of super rice yield, and significantly reduced CH4 emissions, global warming potential (GWP), and greenhouse gas intensity (GHGI), whereas S had the opposite and negative effects. In summary, the biochar amendments in cold waterlogged paddy soils of North China increased soil nitrogen and carbon content, improved soil carbon sequestration, and reduced GHG emission without affecting the yield of super rice.
基金supported by the National Natural Science Foundation of China (31070549, 31130013 and 40801087)the Research Project of Ministry of Education, China (213019A)
文摘Whether the biochar amendment could affect soil organic matter (SOM) turnover and hence soil carbon (C) stock remains poorly understood. Effects of the addition of ^13C-labelled rice straw or its pyrolysed biochar at 250 or 350℃ to a sugarcane soil (Ferrosol) on soil labile C (dissolved organic C, DOC; microbial biomass C, MBC; and mineralizable C, MC) and soil organic C (SOC) were investigated after 112 d of laboratory incubation at 25℃. Four treatments were examined as (1) the control soil without amendment (Soil); (2) soil plus ^13C-labelled rice straw (Soil+Straw); (3) soil plus 250℃ biochar (Soil+B250) and (4) soil plus 350℃biochar (Soil+B350). Compared to un-pyrolysed straw, biochars generally had an increased aryl C, carboxyl C, C and nitrogen concentrations, a decreased O-alkyl C and C:N ratio, but similar alkyl C and δ^13C (1 742- 1 877 %). Among treatments, significant higher DOC, MBC and MC derived from the new C (straw or biochar) ranked as Soil+Straw〉Soil+B250〉Soil+B350, whilst significant higher SOC from the new C as Soil+B250〉Soil+Straw≈Soil+B350. Compared to Soil, DOC and MBC derived from the native soil were decreased under straw or biochar addition, whilst MC from the native soil was increased under straw addition but decreased under biochar addition. Meanwhile, native SOC was similar among the treatments, irrespective of the straw or biochar addition. Compared to Soil, significant higher total DOC and total MBC were under Soil+Straw, but not under Soil+B250 and Soil+B350, whilst significant higher total MC and total SOC were under straw or biochar addition, except for MC under Soil+B350. Our results demonstrated that the application of biochar to soil may be an appropriate management practice for increasing soil C storage.
文摘Sustainable rice production in Sierra Leone faces serious constraints due to soil acidity, low cation exchange capacity, low nutrient contents accelerated mineralization of soil organic matter and soil loss by erosion (particularly on the uplands). One possible approach to addressing the soil constraints to rice production both on uplands and lowlands of Sierra Leone is the recycling of rice residues through biochar production and application to soils. A pot experiment was conducted to investigate the effects of application of biochar from rice residues on (i) soil physicochemical properties and (ii) the early growth characteristics of two rice varieties, NERICA L19 and ROK3. The experiment was arranged in a completely randomized design (CRD) with two biochar levels (0 and 15 g/kg soil) and two rice varieties in three replications. For the biochar treated soils (+biochar), 75 g rice straw biochar was applied to 5 kg air-dry soil (15 kg biochar/kg soil), mixed thoroughly and placed into perforated black polythene bags. Seeds of two rice varieties, NERICA L19 and ROK3 were planted on the treated and untreated soils for eight weeks. Application of biochar improved available phosphorus, exchangeable cations and cation exchange capacity in biochar treated soils compared to the control soil without biochar. Plant height, tiller number, and dry biomass weight of both rice varieties grown in soils amended with rice straw biochar were significantly higher than those on untreated soils. The most remarkable increase in plant growth characteristics as a result of biochar addition to soil was reflected in the biomass yield and tiller numbers. Dry shoot biomass for ROK3 rice variety varied significantly from a mean of 3.5 g (control) to 26.2 g (+biochar) while tiller numbers significantly varied from 10 (control) to 29.6 (+biochar). Similarly, for NERICA L19 rice variety, dry shoot biomass increased significantly from 4.5 g (control) to 22.7 g (+biochar) while tiller numbers increased significantly from a mean of 12.3 (control) to 30 (+biochar). Thus converting rice residues to biochar and applying to soil holds promise for improving rice production in Sierra Leone.
基金Doctoral Research Start-up Fund Project of Liaoning Province(2019-B-237)National Special Project for the Construction of Modern Agricultural Industrial Technology System(CARS-01-51).
文摘[Objectives]In order to explore the feasibility of using straw and biochar returned to the soil to improve soil physical properties and pH value in cold rice regions of China.[Methods]the effects of straw directly returned to the soil and charred straw(biochar)returned to the soil on soil bulk density,porosity,temperature and pH value of cold paddy soil were studied in this paper.[Results]The results showed that compared with conventional production,straw(6 t/ha),a small amount of biochar(2 t/ha)and a large amount of biochar(40 t/ha)returned to the soil reduced paddy soil bulk density at different growth stages by 6.02%-11.86%,2.69%-6.67%and 8.58%-11.32%,respectively,increased total porosity by 7.41%-14.93%,3.19%-8.38%and 9.81%-14.27%,respectively,and increased aeration porosity by 22.28%-192.11%,17.80%-92.11%and 52.44%-157.11%,respectively.Straw and a small amount of biochar returned to the soil had no significant effect on soil temperature and pH value of paddy field,but a large amount of biochar returned to the soil could significantly increase soil temperature by 5.13%-8.79%and pH value by 3.15%-5.96%in the later stage of rice growth.[Conclusions]The straw and biochar returned to the soil could reduce soil bulk density,increase total porosity and aeration porosity,and only a large amount of biochar returned to the soil could significantly increase soil temperature and pH value.
文摘The aim of this study is to investigate the effect of different additives including biochar, effective micro-organisms (EM), animal manure and commercial microbial inoculants on the bioconversion of rice straw. Different compost piles were constructed, and each contained 50 kg of rice straw and mixture of natural rocks to enrich the compost nutritional value. The physical, chemical and biological parameters indicating the decomposition of organic material, maturation and quality of the organic fertilizer product were investigated during the composting process. A rapid increase in compost temperature was obtained in inoculated piles. All piles reached maturation after around 42 days. All analysis of the properties of the final compost products indicated that it was in the range of the matured level and can be used as organic fertilizer without limitation. The highest decomposition rate and highest organic fertilizer quality were obtained in the pile inoculated with EM and 10% biochar compared to other treatments.
基金Supported by China National Key Research and Development Program(2017YFD0300710-A04,2017YFD0100502-4,2018YFD0300305-02)Special Project for Construction of China Modern Agricultural Industrial Technology System(CARS-01-51).
文摘To study the effects of straw utilization methods on dry matter production and yield of japonica rice in northern China,taking the super japonica rice Shennong 265 as the test material,using the planting method of seedling transplanting,setting four treatments,namely,the conventional production,directly returning straws to field(6 t/ha),returning straws to field at low amount of biochar(2 t/ha)and returning straws to field at high amount of biochar(40 t/ha),this paper analyzed the changes in production and yield of super japonica rice Shennong265.According to the experimental results,compared with the conventional production,after the straws were directly returned to the field,the dry matter accumulation of japonica rice was insufficient,and the leaf output rate and contribution rate were significantly reduced by 41.19%and 34.69%,respectively;the number of filled grains per panicle,1000-grain weight,and panicles per plant showed negative effect,leading to a decline in the yield;under the condition of returning straws to field at high amount of biochar,the dry matter accumulation showed a decline trend,both the leaf and stem sheath significantly reduced by 21.41%and 17.43%,and the number of filled grains per panicle also declined;under the condition of returning straws to field at low amount of biochar,the dry matter accumulation increased,and the leaf contribution rate increased by 11.68%,the number of filled grains per panicle,1000-grain weight,and panicles per plant showed positive effect,showing the potential of yield increase.In conclusion,returning suitable straw biochar to field(2 t/ha)is favorable for promoting the japonica rice production in northern China.
文摘Rice is the prominent food grain required by more than half of the world's population to fulfill their nutritional demand.With the continuous growth in the population at the global level,rice production has also been elevated.However,high rice production also creates a new problem in waste management worldwide.Rice straw,generated after rice harvest,possesses meager nutritional value,due to which it is less preferred as fodder and burned in the field.Paddy burning is one of the major causes of air pollution,leading to lung,heart,eye,and skin-related diseases and even premature death.This stubble burning also decreases soil fertility.In this review article,we have discussed the various economic uses of paddy straw which will help to reduce air pollution through the decline in paddy straw burning.Biochar is produced from paddy straw,which can be mixed into the soil to restore fertility and reduce toxic metals'bioavailability.The generation of biofuels such as biobutanol,bioethanol,and biogas from rice straw with their mechanism of synthesis is also discussed in this article.Rice straw can also be utilized in the preparation of solid fuel.Along with this,mushroom cultivation in paddy straw houses is also described.Paddy straw can be used for the pulp and paper industries,which will help to reduce the tree dependence of these industries.Apart from this,a bibliometric analysis of the Scopus database on rice straw uses for the last 20 years was done,including a bibliographic keyword analysis to show published documents'trends.This review will give an elaborated overview of the alternative uses of rice straw with a quantitative analysis of air pollution caused by paddy straw burning.This review will also help to improve the current uses of paddy straw for industrial and commercial benefits to make it more economical.
基金National Natural Science Foundation of China(NSFC)[Grant Number 51976029].
文摘Icing of wind turbine blades will seriously hinder the development of the wind power industry,and the use of biomass resources to solve the icing problem is conducive to promoting the synergistic development of biomass and wind energy.In this study,ice-phobic coatings with photothermal and anti-corrosion properties were prepared by surface modification pyrolysis and hydrothermal reaction with rice straw biogas residue as raw material.The erosion of KOH and the surface modification of MoS_(2) produced a rough structure of the material,and the high-temperature pyrolysis and hydrothermal reaction promoted the dehydrogenation and decarboxylation reactions,which reduced the number of oxygen-containing functional groups and decreased the surface energy of the material.The ice-phobic coating has superhydrophobic properties with a contact angle of 158.32°.Due to the small surface area in contact with water,the coating was able to significantly reduce the icing adhesion strength to 53.23 kPa.The icing wind tunnel test results showed that the icing area and mass were reduced by 10.54%and 30.08%,respectively,when the wind speed was 10 m s^(−1) and the temperature was−10°C.Photothermal performance tests showed that the MoS_(2)-loaded material had light absorption properties,and the coating could rapidly warm up to 58.3℃under xenon lamp irradiation with photothermal cycle stability.The loading of MoS_(2) acts as a physical barrier,reducing the contact of corrosive media with the substrate,thus improving the anti-corrosion of the coating.This study has practical application value and significance for the development of the anti-icing field under complex environmental conditions.
基金Supported by the National Natural Science Foundation of China(No.41571283)
文摘Returning biochar to soil is a heavily researched topic because biochar functions well for soil improvement. There is a significant loss of nutrients, which occurs during biochar preparation before biochar is returned to soil,thereby seriously undermining biochar's efficacy. Therefore, the transformation mechanisms of biochar p H,mass, nutrients and metals during pyrolysis under different atmospheres and temperatures were studied such that the best method for biochar preparation could be developed. Several conclusions can be reached:(1) a CO2 atmosphere is better than a N2 atmosphere for biochar preparation, although preparation in a CO2 atmosphere is not a common practice for biochar producers;(2) 350 ℃is the best temperature for biochar preparation because the amount of nutrient loss is notably low based on the premise of straw transferred into biochar; and(3) transforming mechanisms of pH, N, P and K are also involved in the biochar preparation process.