Se-rich black rock series of the Middle and Late Permian system is widely distributed in Enshi Prefecture with an exposed area of 850 km~2,among which the unique Yutangba black rock series independent selenium deposit...Se-rich black rock series of the Middle and Late Permian system is widely distributed in Enshi Prefecture with an exposed area of 850 km~2,among which the unique Yutangba black rock series independent selenium deposit with industrial mining significance in the world is produced.However,the source and metallogenic mechanisms of Se are still controversial.In general,terrestrial weathering and submarine hydrothermal processes are the main source end members of Si and Se,and the related siliceous rocks record the deposition process of Si and Se from different sources.The study of lithofacies and paleogeography shows that western Hubei belongs to the near eastwest turn of the Yangzi platform in the Middle and Late Permian and becomes an inter-platform basin with nearly north-south direction.Therefore,the comparative study of the Yutangba deposit and the selenium-rich black rock series in the northern Shadi with high selenium content is expected to reveal the provenance evolution of the two sections in space,and further restrict the Se mineralization mechanism in the Enshi basin.From the element geochemistry study,the black rock series in two study areas may have formed in a transitional position of either the continental margin or continental slope,in the process of sedimentary,more terrigenous clastic materials entered.They are rich in lithophile elements V and Cr.δU>1.0,U/Th and V/(V+Ni)ratio indicate that the Se-rich strata of black rock series in the Enshi areas occurred in an anoxic reducing environment and formed in an environment between the ocean basin and the continental margin.From Si-O isotope geochemistry,the original Si source of the study area is thought to relate to a volcanic eruption,which leads to the enrichment of Si in the seawater.The determined values of S isotope in the black rock series of the two study areas both show the characteristics related to organic reduction/biogenic.展开更多
The carbonaceous-siliceous-argillitic rock type uranium deposit in the Zoige area is located in the northeastern margin of the Tibetan Plateau, and has gained much attention of many geologists and ore deposit experts ...The carbonaceous-siliceous-argillitic rock type uranium deposit in the Zoige area is located in the northeastern margin of the Tibetan Plateau, and has gained much attention of many geologists and ore deposit experts due to its scale, high grade and abundant associated ores. Because of the insufficient reliable dating of intrusive rocks, the relationship between mineralization and the magmatic activities is still unknown. In order to study this key scientific issue and the ore-forming processes of the Zoige uranium ore field, the LA-ICP-MS zircon U-Pb dating of magmatic rocks was obtained:64.08±0.59 Ma for the granite-prophyry and ~200 Ma for the dolerite. U-Pb dating results of uraninite from the Zoige uranium ore field are mainly concentrated on ~90 Ma and ~60 Ma. According to LA-ICP-MS U-Pb zircon dating, the ages for the dolerite, porphyry granite and granodiorite are 200 Ma, 64.08 Ma approximately and 226.5-200.88 Ma, respectively. This indicates that the mineralization has close relationship with activities of the intermediate-acidic magma. The ages of the granite porphyry are consistent with those uraninite U-Pb dating results achieved by previous studies, which reflects the magmatic and ore-forming event during the later Yanshanian. Based on the data from previous researches, the ore bodies in the Zoige uranium ore field can be divided into two categories:the single uranium type and the uranium with polymetal mineralization type. The former formed at late Cretaceous(about 90 Ma), while the latter, closely related to the granite porphyry, formed at early Paleogene(about 60 Ma). And apart from ore forming elemental uranium, the latter is often associated with polymetallic elements, such as molybdenum, nickel, zinc, etc.展开更多
The organic matter of three different chronological major carbonaceous rock gold-bearing formations of South China (Middle Proterozoic Shangqiaoshan group of northeastern Jiangxi, Lower Cambrian Shuikou group of north...The organic matter of three different chronological major carbonaceous rock gold-bearing formations of South China (Middle Proterozoic Shangqiaoshan group of northeastern Jiangxi, Lower Cambrian Shuikou group of northern Guangxi and Devonian Shetianqiao group of eastern Hunan) and related carbonaceous stratabound gold deposits such as Jinshan, Longshui and Shixia deposits, respectively, has been characterized by organic geochemical techniques. These organic geochemical results show that the average total organic carbon (TOC) content of the three chronological carbonaceous rock gold-bearing formations of South China ranges from 0.15% to 1.56%. The thermal maturity of the organic matter of host rocks in the three gold-bearing formations is high. The micro-component of the organic matter of the host rocks consists primarily of solid bitumen and graphite. The organic carbon and gold of the host rocks appear to syndepositin situ during the formation of the gold-bearing formations. The organic carbon played a certain role in controlling the geochemical environment of the gold-bearing formations. The metallogenetic mechanism of the carbonaceous rock stratabound gold deposits of South China is closely associated in genesis with the sedimentation, diagenesis and thermal evolution history of the organic matter of host rocks in the gold-bearing formations.展开更多
基金supported by the General Project of Natural Science Foundation of Shaanxi Province(2020JM423)。
文摘Se-rich black rock series of the Middle and Late Permian system is widely distributed in Enshi Prefecture with an exposed area of 850 km~2,among which the unique Yutangba black rock series independent selenium deposit with industrial mining significance in the world is produced.However,the source and metallogenic mechanisms of Se are still controversial.In general,terrestrial weathering and submarine hydrothermal processes are the main source end members of Si and Se,and the related siliceous rocks record the deposition process of Si and Se from different sources.The study of lithofacies and paleogeography shows that western Hubei belongs to the near eastwest turn of the Yangzi platform in the Middle and Late Permian and becomes an inter-platform basin with nearly north-south direction.Therefore,the comparative study of the Yutangba deposit and the selenium-rich black rock series in the northern Shadi with high selenium content is expected to reveal the provenance evolution of the two sections in space,and further restrict the Se mineralization mechanism in the Enshi basin.From the element geochemistry study,the black rock series in two study areas may have formed in a transitional position of either the continental margin or continental slope,in the process of sedimentary,more terrigenous clastic materials entered.They are rich in lithophile elements V and Cr.δU>1.0,U/Th and V/(V+Ni)ratio indicate that the Se-rich strata of black rock series in the Enshi areas occurred in an anoxic reducing environment and formed in an environment between the ocean basin and the continental margin.From Si-O isotope geochemistry,the original Si source of the study area is thought to relate to a volcanic eruption,which leads to the enrichment of Si in the seawater.The determined values of S isotope in the black rock series of the two study areas both show the characteristics related to organic reduction/biogenic.
基金supported financially by the National Natural Scientific Foundation of China (Grants No. 40872069 and 41173059)the National Basic Research Program of China (973 Program) (Grants No. 2015CB453000)+1 种基金China Geological Survey (Grants No. 12120113095500)the Foundation of China Nuclear Geology (Grants No. 201148)
文摘The carbonaceous-siliceous-argillitic rock type uranium deposit in the Zoige area is located in the northeastern margin of the Tibetan Plateau, and has gained much attention of many geologists and ore deposit experts due to its scale, high grade and abundant associated ores. Because of the insufficient reliable dating of intrusive rocks, the relationship between mineralization and the magmatic activities is still unknown. In order to study this key scientific issue and the ore-forming processes of the Zoige uranium ore field, the LA-ICP-MS zircon U-Pb dating of magmatic rocks was obtained:64.08±0.59 Ma for the granite-prophyry and ~200 Ma for the dolerite. U-Pb dating results of uraninite from the Zoige uranium ore field are mainly concentrated on ~90 Ma and ~60 Ma. According to LA-ICP-MS U-Pb zircon dating, the ages for the dolerite, porphyry granite and granodiorite are 200 Ma, 64.08 Ma approximately and 226.5-200.88 Ma, respectively. This indicates that the mineralization has close relationship with activities of the intermediate-acidic magma. The ages of the granite porphyry are consistent with those uraninite U-Pb dating results achieved by previous studies, which reflects the magmatic and ore-forming event during the later Yanshanian. Based on the data from previous researches, the ore bodies in the Zoige uranium ore field can be divided into two categories:the single uranium type and the uranium with polymetal mineralization type. The former formed at late Cretaceous(about 90 Ma), while the latter, closely related to the granite porphyry, formed at early Paleogene(about 60 Ma). And apart from ore forming elemental uranium, the latter is often associated with polymetallic elements, such as molybdenum, nickel, zinc, etc.
文摘The organic matter of three different chronological major carbonaceous rock gold-bearing formations of South China (Middle Proterozoic Shangqiaoshan group of northeastern Jiangxi, Lower Cambrian Shuikou group of northern Guangxi and Devonian Shetianqiao group of eastern Hunan) and related carbonaceous stratabound gold deposits such as Jinshan, Longshui and Shixia deposits, respectively, has been characterized by organic geochemical techniques. These organic geochemical results show that the average total organic carbon (TOC) content of the three chronological carbonaceous rock gold-bearing formations of South China ranges from 0.15% to 1.56%. The thermal maturity of the organic matter of host rocks in the three gold-bearing formations is high. The micro-component of the organic matter of the host rocks consists primarily of solid bitumen and graphite. The organic carbon and gold of the host rocks appear to syndepositin situ during the formation of the gold-bearing formations. The organic carbon played a certain role in controlling the geochemical environment of the gold-bearing formations. The metallogenetic mechanism of the carbonaceous rock stratabound gold deposits of South China is closely associated in genesis with the sedimentation, diagenesis and thermal evolution history of the organic matter of host rocks in the gold-bearing formations.