Based on global monthly average data set of sea surface temperature (SST) during 1950 - 1992 and global monthly average 500 hPa height during 1930- 1997 offered by NCARINCEP, the feature of SST anomaly in the Atlantic...Based on global monthly average data set of sea surface temperature (SST) during 1950 - 1992 and global monthly average 500 hPa height during 1930- 1997 offered by NCARINCEP, the feature of SST anomaly in the Atlantic and its relation with summer precipitation over the Northeast China are analyzed. The results show that, the second eigenvector of the SST’s empirical orthogonal expanssion in winter season over the North Atlantic suggests that dist-ibution of SST anomaly has unusual meridional difference; The location of its center is basically identical to center of significant correlation region be- tween summer precipitation over the Northeast China and winter SST in the Atlantic. When winter SST in the North Atlantic is hot in south and cold in north, the blocking situation is stronger in the middle- high latitude. Correspondingly, the blocking high pressure in the northern North Pacific is also getting stronger, the westerlies circulation index in East Asia in next summer would be lower,as a result,more precipitation in the summer would be experienced over Northeast China and vice versa.展开更多
The North Atlantic Oscillation (NAO) is one of the leading modes of climate variability in the Northern Hemisphere. It has been shown that it clearly relates to changes in meteorological variables, such as surface t...The North Atlantic Oscillation (NAO) is one of the leading modes of climate variability in the Northern Hemisphere. It has been shown that it clearly relates to changes in meteorological variables, such as surface temperature, at hemispherical scales. However, recent studies have revealed that the NAO spatial pattern also depends upon solar forcing. Therefore, its effects on meteorological variables must vary depending upon this factor. Moreover, it could be that the Sun affects climate through variability patterns, a hypothesis that is the focus of this study. We find that the relationship between the NAO/AO and hemispheric temperature varies depending upon solar activity. The results show a positive significant correlation only when solar activity is high. Also, the results support the idea that solar activity influences tropospheric climate fluctuations in the Northern Hemisphere via the fluctuations of the stratospheric polar vortex .展开更多
Based on reanalysis data from 1979 to 2016,this study focuses on the sea surface temperature(SST)anomaly of the tropical North Atlantic(TNA)in El Nino decaying years.The TNA SST exhibits a clear warm trend during this...Based on reanalysis data from 1979 to 2016,this study focuses on the sea surface temperature(SST)anomaly of the tropical North Atlantic(TNA)in El Nino decaying years.The TNA SST exhibits a clear warm trend during this period.The composite result for 10 El Nino events shows that the TNA SST anomaly reaches its maximum in spring after the peak of an El Nino event and persists until summer.In general,the anomaly is associated with three factors-namely,El Nino,the North Atlantic Oscillation(NAO),and a long-term trend,leading to an increase in local SST up to 0.4℃,0.3℃,and 0.35℃,respectively.A comparison between 1983 and 2005 indicates that the TNA SST in spring is affected by El Niño,as well as the local SST in the preceding winter,which may involve a long-term trend signal.In addition,the lead-lag correlation shows that the NAO leads the TNA SST by 2-3 months.By comparing two years with an opposite phase of the NAO in winter(i.e.,1992 and 2010),the authors further demonstrate that the NAO is another important factor in regulating the TNA SST anomaly.A negative phase of the NAO in winter will reinforce the El Nino forcing substantially,and vise versa.In other words,the TNA SST anomaly in the decaying years is more evident if the NAO is negative with El Nino.Therefore,the combined effects of El Nino and the NAO must be considered in order to fully understand the TNA SST variability along with a long-term trend.展开更多
In this paper, the response of the atmospheric 3-5 year cycle to Northern Pacific SST is discussed, The results are as follows:1. From the simultaneous temporal correlations between the Equatorial Eastern Pacific SST,...In this paper, the response of the atmospheric 3-5 year cycle to Northern Pacific SST is discussed, The results are as follows:1. From the simultaneous temporal correlations between the Equatorial Eastern Pacific SST, the westerly dirft area's SST and the Northern Pacific SST at all gridpoints, we find that there are three correlative regions in the Northern Pacific SST field, they are the westerly drift area, the Equatorial Eastern Pacific and the Alaska Bay , and their structures are very similar to the PNA pattern in the atmosphere The difference PTI between the Equatorial Eastern Pacific SST anomaly and the westerly drift area's SST anomaly can indicate the change of the PNA pattern of the Northern Pacific SST anomaly. It can represent SST change of 65 % areas over the Northern Pacific and can keep watch on El Nino and un-El Nino.2. Simultaneous temporal correlative field between PTI and filtered 500hPa (there is 3-5 year cycle only ) of the Northern Hemisphere presents clear PNA structure. The responses of the filtered 500hPa to El Nino and to un-EI Nino produce +PNA and -PNA wavetrains respectively.3. According to the different positions of the sea-surface temperature rise (drop) ,El Nino (un-EI Nino )can be divided into two classes: east-pattern and middle-pattern. The responses of the filtered 500hPa to the east-pattern and to the middle-pattern will produce PNA and EAA wavetrain respectively. This indicates that the responses of the atmosphere to the stationary heat sources in diffrent areas will produce wavetrains in diffrent track.展开更多
The variability of ocean circulation and sea surface temperature (SST) in the tropical Atlantic, especially in the Gulf of Guinea (GG), defines this region as exceptionally rich from an oceanographic perspective. The ...The variability of ocean circulation and sea surface temperature (SST) in the tropical Atlantic, especially in the Gulf of Guinea (GG), defines this region as exceptionally rich from an oceanographic perspective. The Guinea Current (GC), as the major surface current, plays a significant role in marine productivity and coastal upwelling in the GG. This coastal upwelling is known to influence the climate of the surrounding region, primary productivity and local fisheries. Studies on GC variability and its impact on this coastal upwelling have highlighted that the upwelling downstream of Cape Palmas is influenced by GC detachment, topographic variations and advective processes leading to significant vertical mixing. This study aims to analyze the interannual variability of the GC and its impact on coastal upwelling using the Coastal and Regional Ocean COmmunity model (CROCO). The model’s evaluation is conducted using observational data, specifically Geostrophic and EKman Current Observatory (GEKCO) and Ocean Surface Current Analysis (OSCAR) for currents, and Air-sea Fluxes for the global Tropic ocean-description (TROPFLUX) and Optimum Interpolation-Sea Surface Temperature (OI-SST) for temperature. Thus, the model evaluation indicates that it accurately replicates ocean circulation and SST patterns in the tropical Atlantic and the GG. The joint analysis of upwelling indices (surface and intensity) and the position of the GC core allowed us to conclude that the displacement of the GC core does indeed influence the upwelling indices in the northern part of GG. However, other oceanic and atmospheric mechanisms such as vertical diffusion and horizontal advection as proposed by previous studies may also affect the year-by-year variability of coastal upwelling in the northern GG.展开更多
Recent observational study has shown that the southern center of the summer North Atlantic Oscillation (SNAO) was located farther eastward after the late 1970s compared to before. In this study, the cause for this p...Recent observational study has shown that the southern center of the summer North Atlantic Oscillation (SNAO) was located farther eastward after the late 1970s compared to before. In this study, the cause for this phenomenon is explored. The result shows that the eastward shift of the SNAO southern center after the late 1970s is related to the variability of the Mediterranean-Black Sea (MBS) SST. A warm MBS SST can heat and moisten its overlying atmosphere, consequently producing a negative sea level pressure (SLP) departure over the MBS region. Because the MBS SST is negatively correlated with the SNAO, the negative SLP departure can enhance the eastern part of the negative-phase of the SNAO southern center, consequently producing an eastward SNAO southern center shift. Similarly, a cold MBS SST produces an eastward positive-phase SNAO southern center shift. The reason for why the MBS SST has an impact on the SNAO after the late 1970s but why it is not the case beforehand is also discussed. It is found that this instable relationship is likely to be attributed to the change of the variability of the MBS SST on the decadal time-scale. In 1951 1975, the variability of the MBS SST is quite weak, but in 1978 2002, it becomes more active. The active SST can enhance the interaction between the sea and its overlying atmosphere, thus strengthening the connection between the MBS SST and the SNAO after the late 1970s. The above observational analysis results are further confirmed by sensitivity experiments.展开更多
In this study,physical mechanism of the impacts of the tropical Atlantic sea surface temperature(SST)on decadal change of the summer North Atlantic Oscillation(SNAO)was explored using an atmospheric general circulatio...In this study,physical mechanism of the impacts of the tropical Atlantic sea surface temperature(SST)on decadal change of the summer North Atlantic Oscillation(SNAO)was explored using an atmospheric general circulation model(AGCM)developed at the International Centre for Theoretical Physics(ICTP).The simulation results indicate that the decadal warming of the SST over the tropical Atlantic after the late 1970s could have significantly enhanced the convection over the region.This enhanced convection would have strengthened the local meridional circulation over the Eastern Atlantic-North Africa-Western Europe region,exciting a meridional teleconnection.This teleconnection might have brought the signal of the tropical Atlantic SST to the Extratropics,consequently activating the variability of the eastern part of the SNAO southern center,which led to an eastward shift of the SNAO southern center around the late 1970s.Such physical processes are highly consistent with the previous observations.展开更多
This study examined the impact of the preceding boreal summer(June–August) North Atlantic Oscillation(NAO) on early autumn(September) rainfall over Central China(RCC). The results show that a significant positive cor...This study examined the impact of the preceding boreal summer(June–August) North Atlantic Oscillation(NAO) on early autumn(September) rainfall over Central China(RCC). The results show that a significant positive correlation exists between the preceding summer NAO and the early autumn RCC on the interannual timescale. In order to understand the physical mechanism between them, the role of ocean was investigated. It was found that the strong summer NAO can induce a tripole sea surface temperature anomaly(SSTA) in the North Atlantic; this SSTA pattern can persist until early autumn. The diagnostic analysis showed that the tripole SSTA pattern excites a downstream Atlantic-Eurasian(AEA) teleconnection, which contributes to an increase in RCC. The circulation anomalies related to SSTA caused by the weak NAO are opposite, so the RCC is less than normal. The results imply that the preceding summer NAO may be regarded as a forecast factor for the early autumn RCC.展开更多
By using electric power data,observational station temperature data in Beijing,CN05.1 temperature data,ERA5 atmospheric reanalysis data,and ERSST.v3 b sea surface temperature(SST) data,it is found that summer(JulyAugu...By using electric power data,observational station temperature data in Beijing,CN05.1 temperature data,ERA5 atmospheric reanalysis data,and ERSST.v3 b sea surface temperature(SST) data,it is found that summer(JulyAugust) electric power demand in Beijing is remarkably positively correlated with the previous spring(MarchApril) tropical North Atlantic(TNA) SST anomaly(SSTA).The possible physical mechanism of the TNA SSTA affecting summer electric power in Beijing is also revealed.When a positive SSTA occurs in the TNA during spring,anomalous easterlies prevail over the tropical central Pacific,which can persist to the following summer.Trade winds are thus enhanced over the northern Pacific,which favors a strengthening of upwelling cold water in the tropical central-eastern Pacific.As a result,a negative SSTA appears in the central-eastern Pacific in summer,which means a La Nina event is triggered by the previous TNA SSTA through the Bjerknes feedback.During the La Nina event,an anomalous anticyclonic circulation occupies the northwestern Pacific.The southerly anomalies at the western edge of this anomalous anticyclone strengthen the transportation of warm and humid airflow from the low latitudes to North China,where Beijing is located,causing higher summer temperatures and increased electricity usage for air conditioning,and vice versa.The results of this study might provide a new scientific basis and dues for the seasonal prediction of summer electric power demand in Beijing.展开更多
The time-integrated yearly values of North Atlantic Oscillation (INAO) are found to be well correlated to the sea surface temperature. The results give the feasibility of using INAO as a good proxy for climate change ...The time-integrated yearly values of North Atlantic Oscillation (INAO) are found to be well correlated to the sea surface temperature. The results give the feasibility of using INAO as a good proxy for climate change and contribute to a more complete picture of the full range of variability inherent in the climate system. Moreover, the extrapolation in the future of the well identified 65-year harmonic in INAO suggests a gradual decline in global warming starting from 2005.展开更多
This paper reports high-resolution biomarker records of the last 260 ka for core MD05-2904 from the northern South China Sea (SCS). The sea surface temperature (SST) record using the U k3’7 index re-veals a minimum o...This paper reports high-resolution biomarker records of the last 260 ka for core MD05-2904 from the northern South China Sea (SCS). The sea surface temperature (SST) record using the U k3’7 index re-veals a minimum of 21.5℃ (MIS 2) and a maximum of 28.3℃ (MIS 5.5), for a temperature difference of almost 7℃, and provides the longest high-resolution U k3’7 SST record in northern SCS. The content of odd-number long chain n-alkanes and several n-alkanes indexes such as the CPI, ACL and the C31/C27 ratio, all reveal generally higher values during the glacials and lower values during the interglacials. Terrestrial input as indicated by n-alkane content was mostly controlled by sea-level changes: During the glacials, lower sea-level exposed the continental shelf to enable rivers to transport more terrestrial materials to the slope; and the situation reverses during the interglacials. The n-alkane indexes changes reveal more n-alkanes from contemporary vegetation during glacials as a result of the prox-imity of the core site to the source region, while the increases in ACL and C31/C27 ratio during glacials indicate a change to more grassy vegetation. However, the highest values for CPI, ACL and the C31/C27 ratio all occurred during late MIS 3, and it was suggested that this period was characterized by a strong summer monsoon-dominated humid climate which resulted in a denser vegetation for the exposed continental shelf region.展开更多
This study examined the relationship between the boreal spring(April?May) Antarctic Oscillation(AAO) and the North American summer monsoon(NASM)(July?September) for the period of 1979?2008.The results show that these ...This study examined the relationship between the boreal spring(April?May) Antarctic Oscillation(AAO) and the North American summer monsoon(NASM)(July?September) for the period of 1979?2008.The results show that these two systems are closely related.When the spring AAO was stronger than normal,the NASM tended to be weaker,and there was less rainfall over the monsoon region.The opposite NASM situation corresponded to a weaker spring AAO.Further analysis explored the possible mechanism for the delayed impact of the boreal spring AAO on the NASM.It was found that the tropical Atlantic sea surface temperature(SST) plays an important role in the connection between the two phenomena.The variability of the boreal spring AAO can produce anomalous SSTs over the tropical Atlantic.These SST anomalies can persist from spring to summer and can influence the Bermuda High,affecting water vapor transportation to the monsoon region.Through these processes,the boreal spring AAO exerts a significantly delayed impact on the amount of NASM precipitation.Thus,information about the boreal spring AAO is valuable for the prediction of the NASM.展开更多
In this study, we investigate the influence of low-frequency solar forcing on the East Asian winter monsoon(EAWM)by analyzing a four-member ensemble of 600-year simulations performed with Had CM3(Hadley Centre Coup...In this study, we investigate the influence of low-frequency solar forcing on the East Asian winter monsoon(EAWM)by analyzing a four-member ensemble of 600-year simulations performed with Had CM3(Hadley Centre Coupled Model,version 3). We find that the EAWM is strengthened when total solar irradiance(TSI) increases on the multidecadal time scale. The model results indicate that positive TSI anomalies can result in the weakening of Atlantic meridional overturning circulation, causing negative sea surface temperature(SST) anomalies in the North Atlantic. Especially for the subtropical North Atlantic, the negative SST anomalies can excite an anomalous Rossby wave train that moves from the subtropical North Atlantic to the Greenland Sea and finally to Siberia. In this process, the positive sea-ice feedback over the Greenland Sea further enhances the Rossby wave. The wave train can reach the Siberian region, and strengthen the Siberian high. As a result, low-level East Asian winter circulation is strengthened and the surface air temperature in East Asia decreases. Overall,when solar forcing is stronger on the multidecadal time scale, the EAWM is typically stronger than normal. Finally, a similar linkage can be observed between the EAWM and solar forcing during the period 1850–1970.展开更多
The Localized Weighted Ensemble Kalman Filter(LWEnKF)is a new nonlinear/non-Gaussian data assimilation(DA)method that can effectively alleviate the filter degradation problem faced by particle filtering,and it has gre...The Localized Weighted Ensemble Kalman Filter(LWEnKF)is a new nonlinear/non-Gaussian data assimilation(DA)method that can effectively alleviate the filter degradation problem faced by particle filtering,and it has great prospects for applications in geophysical models.In terms of operational applications,along-track sea surface height(AT-SSH),swath sea surface temperature(S-SST)and in-situ temperature and salinity(T/S)profiles are assimilated using the LWEnKF in the northern South China Sea(SCS).To adapt to the vertical S-coordinates of the Regional Ocean Modelling System(ROMS),a vertical localization radius function is designed for T/S profiles assimilation using the LWEnKF.The results show that the LWEnKF outperforms the local particle filter(LPF)due to the introduction of the Ensemble Kalman Filter(EnKF)as a proposal density;the RMSEs of SSH and SST from the LWEnKF are comparable to the EnKF,but the RMSEs of T/S profiles reduce significantly by approximately 55%for the T profile and 35%for the S profile(relative to the EnKF).As a result,the LWEnKF makes more reasonable predictions of the internal ocean temperature field.In addition,the three-dimensional structures of nonlinear mesoscale eddies are better characterized when using the LWEnKF.展开更多
The Bohai Sea is a low-lying semi-enclosed sea area that is linked to the Yellow Sea via the Bohai straits(mixed zone). Its of fshore seabed is shallow, which makes it vulnerable to serious marine meteorological disas...The Bohai Sea is a low-lying semi-enclosed sea area that is linked to the Yellow Sea via the Bohai straits(mixed zone). Its of fshore seabed is shallow, which makes it vulnerable to serious marine meteorological disasters associated with the northward passage of Pacific tropical cyclones. Analyses on data of remote sensing and buoy of the mixed zone of the Yellow and Bohai seas indicate that all the wind speed, significant wave height, and salinity(SAL) increased, sea surface temperature decreased, and wind energy density changed considerably during the passage of tropical cyclone Matmo on July 25, 2014. It was found that the SAL inversion layer in the mixed zone of the Yellow and Bohai Seas was caused by the tropical cyclone. Furthermore, it was found that the tropical cyclone transported the northern Yellow Sea cold water mass(NYSCWM) into the mixed zone of the Yellow and Bohai Seas. The NYSCWM has direct influence on both the aquaculture and the ecological environment of the region. Therefore, further research is needed to establish the mechanism behind the formation of the SAL inversion layer in the mixed zone, and to determine the influence of tropical cyclones on the NYSCWM.展开更多
文摘Based on global monthly average data set of sea surface temperature (SST) during 1950 - 1992 and global monthly average 500 hPa height during 1930- 1997 offered by NCARINCEP, the feature of SST anomaly in the Atlantic and its relation with summer precipitation over the Northeast China are analyzed. The results show that, the second eigenvector of the SST’s empirical orthogonal expanssion in winter season over the North Atlantic suggests that dist-ibution of SST anomaly has unusual meridional difference; The location of its center is basically identical to center of significant correlation region be- tween summer precipitation over the Northeast China and winter SST in the Atlantic. When winter SST in the North Atlantic is hot in south and cold in north, the blocking situation is stronger in the middle- high latitude. Correspondingly, the blocking high pressure in the northern North Pacific is also getting stronger, the westerlies circulation index in East Asia in next summer would be lower,as a result,more precipitation in the summer would be experienced over Northeast China and vice versa.
文摘The North Atlantic Oscillation (NAO) is one of the leading modes of climate variability in the Northern Hemisphere. It has been shown that it clearly relates to changes in meteorological variables, such as surface temperature, at hemispherical scales. However, recent studies have revealed that the NAO spatial pattern also depends upon solar forcing. Therefore, its effects on meteorological variables must vary depending upon this factor. Moreover, it could be that the Sun affects climate through variability patterns, a hypothesis that is the focus of this study. We find that the relationship between the NAO/AO and hemispheric temperature varies depending upon solar activity. The results show a positive significant correlation only when solar activity is high. Also, the results support the idea that solar activity influences tropospheric climate fluctuations in the Northern Hemisphere via the fluctuations of the stratospheric polar vortex .
基金supported by the National Natural Science Founda-tion of China[grant numbers 41630530 and 41861144015]the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”.
文摘Based on reanalysis data from 1979 to 2016,this study focuses on the sea surface temperature(SST)anomaly of the tropical North Atlantic(TNA)in El Nino decaying years.The TNA SST exhibits a clear warm trend during this period.The composite result for 10 El Nino events shows that the TNA SST anomaly reaches its maximum in spring after the peak of an El Nino event and persists until summer.In general,the anomaly is associated with three factors-namely,El Nino,the North Atlantic Oscillation(NAO),and a long-term trend,leading to an increase in local SST up to 0.4℃,0.3℃,and 0.35℃,respectively.A comparison between 1983 and 2005 indicates that the TNA SST in spring is affected by El Niño,as well as the local SST in the preceding winter,which may involve a long-term trend signal.In addition,the lead-lag correlation shows that the NAO leads the TNA SST by 2-3 months.By comparing two years with an opposite phase of the NAO in winter(i.e.,1992 and 2010),the authors further demonstrate that the NAO is another important factor in regulating the TNA SST anomaly.A negative phase of the NAO in winter will reinforce the El Nino forcing substantially,and vise versa.In other words,the TNA SST anomaly in the decaying years is more evident if the NAO is negative with El Nino.Therefore,the combined effects of El Nino and the NAO must be considered in order to fully understand the TNA SST variability along with a long-term trend.
文摘In this paper, the response of the atmospheric 3-5 year cycle to Northern Pacific SST is discussed, The results are as follows:1. From the simultaneous temporal correlations between the Equatorial Eastern Pacific SST, the westerly dirft area's SST and the Northern Pacific SST at all gridpoints, we find that there are three correlative regions in the Northern Pacific SST field, they are the westerly drift area, the Equatorial Eastern Pacific and the Alaska Bay , and their structures are very similar to the PNA pattern in the atmosphere The difference PTI between the Equatorial Eastern Pacific SST anomaly and the westerly drift area's SST anomaly can indicate the change of the PNA pattern of the Northern Pacific SST anomaly. It can represent SST change of 65 % areas over the Northern Pacific and can keep watch on El Nino and un-El Nino.2. Simultaneous temporal correlative field between PTI and filtered 500hPa (there is 3-5 year cycle only ) of the Northern Hemisphere presents clear PNA structure. The responses of the filtered 500hPa to El Nino and to un-EI Nino produce +PNA and -PNA wavetrains respectively.3. According to the different positions of the sea-surface temperature rise (drop) ,El Nino (un-EI Nino )can be divided into two classes: east-pattern and middle-pattern. The responses of the filtered 500hPa to the east-pattern and to the middle-pattern will produce PNA and EAA wavetrain respectively. This indicates that the responses of the atmosphere to the stationary heat sources in diffrent areas will produce wavetrains in diffrent track.
文摘The variability of ocean circulation and sea surface temperature (SST) in the tropical Atlantic, especially in the Gulf of Guinea (GG), defines this region as exceptionally rich from an oceanographic perspective. The Guinea Current (GC), as the major surface current, plays a significant role in marine productivity and coastal upwelling in the GG. This coastal upwelling is known to influence the climate of the surrounding region, primary productivity and local fisheries. Studies on GC variability and its impact on this coastal upwelling have highlighted that the upwelling downstream of Cape Palmas is influenced by GC detachment, topographic variations and advective processes leading to significant vertical mixing. This study aims to analyze the interannual variability of the GC and its impact on coastal upwelling using the Coastal and Regional Ocean COmmunity model (CROCO). The model’s evaluation is conducted using observational data, specifically Geostrophic and EKman Current Observatory (GEKCO) and Ocean Surface Current Analysis (OSCAR) for currents, and Air-sea Fluxes for the global Tropic ocean-description (TROPFLUX) and Optimum Interpolation-Sea Surface Temperature (OI-SST) for temperature. Thus, the model evaluation indicates that it accurately replicates ocean circulation and SST patterns in the tropical Atlantic and the GG. The joint analysis of upwelling indices (surface and intensity) and the position of the GC core allowed us to conclude that the displacement of the GC core does indeed influence the upwelling indices in the northern part of GG. However, other oceanic and atmospheric mechanisms such as vertical diffusion and horizontal advection as proposed by previous studies may also affect the year-by-year variability of coastal upwelling in the northern GG.
基金supported by National Basic Research Program of China(Grant No2009CB421406)the Chinese Academy of Sciences(Grant NosKZCX2-YW-Q1-02 and KZCX2-YW-BR-14)the National Natural Science Foundation of China(Grant Nos40631005 and 90711004)
文摘Recent observational study has shown that the southern center of the summer North Atlantic Oscillation (SNAO) was located farther eastward after the late 1970s compared to before. In this study, the cause for this phenomenon is explored. The result shows that the eastward shift of the SNAO southern center after the late 1970s is related to the variability of the Mediterranean-Black Sea (MBS) SST. A warm MBS SST can heat and moisten its overlying atmosphere, consequently producing a negative sea level pressure (SLP) departure over the MBS region. Because the MBS SST is negatively correlated with the SNAO, the negative SLP departure can enhance the eastern part of the negative-phase of the SNAO southern center, consequently producing an eastward SNAO southern center shift. Similarly, a cold MBS SST produces an eastward positive-phase SNAO southern center shift. The reason for why the MBS SST has an impact on the SNAO after the late 1970s but why it is not the case beforehand is also discussed. It is found that this instable relationship is likely to be attributed to the change of the variability of the MBS SST on the decadal time-scale. In 1951 1975, the variability of the MBS SST is quite weak, but in 1978 2002, it becomes more active. The active SST can enhance the interaction between the sea and its overlying atmosphere, thus strengthening the connection between the MBS SST and the SNAO after the late 1970s. The above observational analysis results are further confirmed by sensitivity experiments.
基金supported by the National Basic Research Program of China(Grant No.2012CB955401)the National Natural Science Foundation of China(Grant No.40905041)
文摘In this study,physical mechanism of the impacts of the tropical Atlantic sea surface temperature(SST)on decadal change of the summer North Atlantic Oscillation(SNAO)was explored using an atmospheric general circulation model(AGCM)developed at the International Centre for Theoretical Physics(ICTP).The simulation results indicate that the decadal warming of the SST over the tropical Atlantic after the late 1970s could have significantly enhanced the convection over the region.This enhanced convection would have strengthened the local meridional circulation over the Eastern Atlantic-North Africa-Western Europe region,exciting a meridional teleconnection.This teleconnection might have brought the signal of the tropical Atlantic SST to the Extratropics,consequently activating the variability of the eastern part of the SNAO southern center,which led to an eastward shift of the SNAO southern center around the late 1970s.Such physical processes are highly consistent with the previous observations.
基金supported jointly by the National Basic Research Program of China(973 program,Grant No.2013CB340203)the National Natural Science Foundation of China(NSFC)(Grant Nos.41290255 and 41205046)
文摘This study examined the impact of the preceding boreal summer(June–August) North Atlantic Oscillation(NAO) on early autumn(September) rainfall over Central China(RCC). The results show that a significant positive correlation exists between the preceding summer NAO and the early autumn RCC on the interannual timescale. In order to understand the physical mechanism between them, the role of ocean was investigated. It was found that the strong summer NAO can induce a tripole sea surface temperature anomaly(SSTA) in the North Atlantic; this SSTA pattern can persist until early autumn. The diagnostic analysis showed that the tripole SSTA pattern excites a downstream Atlantic-Eurasian(AEA) teleconnection, which contributes to an increase in RCC. The circulation anomalies related to SSTA caused by the weak NAO are opposite, so the RCC is less than normal. The results imply that the preceding summer NAO may be regarded as a forecast factor for the early autumn RCC.
基金supported by the National Natural Science Foundation of China [grant number 42088101]the National Key R&D Program of China [grant number 2018YFC1505604]the National Natural Science Foundation of China [grant numbers 42005016 and 41905061]。
文摘By using electric power data,observational station temperature data in Beijing,CN05.1 temperature data,ERA5 atmospheric reanalysis data,and ERSST.v3 b sea surface temperature(SST) data,it is found that summer(JulyAugust) electric power demand in Beijing is remarkably positively correlated with the previous spring(MarchApril) tropical North Atlantic(TNA) SST anomaly(SSTA).The possible physical mechanism of the TNA SSTA affecting summer electric power in Beijing is also revealed.When a positive SSTA occurs in the TNA during spring,anomalous easterlies prevail over the tropical central Pacific,which can persist to the following summer.Trade winds are thus enhanced over the northern Pacific,which favors a strengthening of upwelling cold water in the tropical central-eastern Pacific.As a result,a negative SSTA appears in the central-eastern Pacific in summer,which means a La Nina event is triggered by the previous TNA SSTA through the Bjerknes feedback.During the La Nina event,an anomalous anticyclonic circulation occupies the northwestern Pacific.The southerly anomalies at the western edge of this anomalous anticyclone strengthen the transportation of warm and humid airflow from the low latitudes to North China,where Beijing is located,causing higher summer temperatures and increased electricity usage for air conditioning,and vice versa.The results of this study might provide a new scientific basis and dues for the seasonal prediction of summer electric power demand in Beijing.
文摘The time-integrated yearly values of North Atlantic Oscillation (INAO) are found to be well correlated to the sea surface temperature. The results give the feasibility of using INAO as a good proxy for climate change and contribute to a more complete picture of the full range of variability inherent in the climate system. Moreover, the extrapolation in the future of the well identified 65-year harmonic in INAO suggests a gradual decline in global warming starting from 2005.
基金the National Natural Science Foundation of China (Grant Nos. 40676032, 40776029 and 40403012) the Innovation Research Group of the National Natural Science Foundation of China (Grant No. 40621063)
文摘This paper reports high-resolution biomarker records of the last 260 ka for core MD05-2904 from the northern South China Sea (SCS). The sea surface temperature (SST) record using the U k3’7 index re-veals a minimum of 21.5℃ (MIS 2) and a maximum of 28.3℃ (MIS 5.5), for a temperature difference of almost 7℃, and provides the longest high-resolution U k3’7 SST record in northern SCS. The content of odd-number long chain n-alkanes and several n-alkanes indexes such as the CPI, ACL and the C31/C27 ratio, all reveal generally higher values during the glacials and lower values during the interglacials. Terrestrial input as indicated by n-alkane content was mostly controlled by sea-level changes: During the glacials, lower sea-level exposed the continental shelf to enable rivers to transport more terrestrial materials to the slope; and the situation reverses during the interglacials. The n-alkane indexes changes reveal more n-alkanes from contemporary vegetation during glacials as a result of the prox-imity of the core site to the source region, while the increases in ACL and C31/C27 ratio during glacials indicate a change to more grassy vegetation. However, the highest values for CPI, ACL and the C31/C27 ratio all occurred during late MIS 3, and it was suggested that this period was characterized by a strong summer monsoon-dominated humid climate which resulted in a denser vegetation for the exposed continental shelf region.
基金supported by the Key Program of theChinese Academy of Sciences (Grant No. KZCX2-YW-Q03-3)the Special Scientific Research Fund of Meteorological Public Welfare Profession of China (Grant No. GYHY200906018)the Na- tional Basic Research Program of China (Grant No. 2009CB421406)
文摘This study examined the relationship between the boreal spring(April?May) Antarctic Oscillation(AAO) and the North American summer monsoon(NASM)(July?September) for the period of 1979?2008.The results show that these two systems are closely related.When the spring AAO was stronger than normal,the NASM tended to be weaker,and there was less rainfall over the monsoon region.The opposite NASM situation corresponded to a weaker spring AAO.Further analysis explored the possible mechanism for the delayed impact of the boreal spring AAO on the NASM.It was found that the tropical Atlantic sea surface temperature(SST) plays an important role in the connection between the two phenomena.The variability of the boreal spring AAO can produce anomalous SSTs over the tropical Atlantic.These SST anomalies can persist from spring to summer and can influence the Bermuda High,affecting water vapor transportation to the monsoon region.Through these processes,the boreal spring AAO exerts a significantly delayed impact on the amount of NASM precipitation.Thus,information about the boreal spring AAO is valuable for the prediction of the NASM.
基金supported by the National Natural Science Foundation of China(Grant Nos.41575086 and 41661144005)the CAS–PKU(Chinese Academy of Sciences–Peking University)Joint Research Program
文摘In this study, we investigate the influence of low-frequency solar forcing on the East Asian winter monsoon(EAWM)by analyzing a four-member ensemble of 600-year simulations performed with Had CM3(Hadley Centre Coupled Model,version 3). We find that the EAWM is strengthened when total solar irradiance(TSI) increases on the multidecadal time scale. The model results indicate that positive TSI anomalies can result in the weakening of Atlantic meridional overturning circulation, causing negative sea surface temperature(SST) anomalies in the North Atlantic. Especially for the subtropical North Atlantic, the negative SST anomalies can excite an anomalous Rossby wave train that moves from the subtropical North Atlantic to the Greenland Sea and finally to Siberia. In this process, the positive sea-ice feedback over the Greenland Sea further enhances the Rossby wave. The wave train can reach the Siberian region, and strengthen the Siberian high. As a result, low-level East Asian winter circulation is strengthened and the surface air temperature in East Asia decreases. Overall,when solar forcing is stronger on the multidecadal time scale, the EAWM is typically stronger than normal. Finally, a similar linkage can be observed between the EAWM and solar forcing during the period 1850–1970.
基金The National Key Research and Development Program of China under contract No.2018YFC1406202the National Natural Science Foundation of China under contract No.41830964.
文摘The Localized Weighted Ensemble Kalman Filter(LWEnKF)is a new nonlinear/non-Gaussian data assimilation(DA)method that can effectively alleviate the filter degradation problem faced by particle filtering,and it has great prospects for applications in geophysical models.In terms of operational applications,along-track sea surface height(AT-SSH),swath sea surface temperature(S-SST)and in-situ temperature and salinity(T/S)profiles are assimilated using the LWEnKF in the northern South China Sea(SCS).To adapt to the vertical S-coordinates of the Regional Ocean Modelling System(ROMS),a vertical localization radius function is designed for T/S profiles assimilation using the LWEnKF.The results show that the LWEnKF outperforms the local particle filter(LPF)due to the introduction of the Ensemble Kalman Filter(EnKF)as a proposal density;the RMSEs of SSH and SST from the LWEnKF are comparable to the EnKF,but the RMSEs of T/S profiles reduce significantly by approximately 55%for the T profile and 35%for the S profile(relative to the EnKF).As a result,the LWEnKF makes more reasonable predictions of the internal ocean temperature field.In addition,the three-dimensional structures of nonlinear mesoscale eddies are better characterized when using the LWEnKF.
基金Supported by the Strategic Priority Research Program of Chinese Academy of Sciences(CAS)(No.XDA11020305)the National Natural Science Foundation of China(No.41576032)the International Cooperation in Key Projects,CAS(Detection of Oil Spill and Its Ecological Impact(No.133337KYSB20160002)
文摘The Bohai Sea is a low-lying semi-enclosed sea area that is linked to the Yellow Sea via the Bohai straits(mixed zone). Its of fshore seabed is shallow, which makes it vulnerable to serious marine meteorological disasters associated with the northward passage of Pacific tropical cyclones. Analyses on data of remote sensing and buoy of the mixed zone of the Yellow and Bohai seas indicate that all the wind speed, significant wave height, and salinity(SAL) increased, sea surface temperature decreased, and wind energy density changed considerably during the passage of tropical cyclone Matmo on July 25, 2014. It was found that the SAL inversion layer in the mixed zone of the Yellow and Bohai Seas was caused by the tropical cyclone. Furthermore, it was found that the tropical cyclone transported the northern Yellow Sea cold water mass(NYSCWM) into the mixed zone of the Yellow and Bohai Seas. The NYSCWM has direct influence on both the aquaculture and the ecological environment of the region. Therefore, further research is needed to establish the mechanism behind the formation of the SAL inversion layer in the mixed zone, and to determine the influence of tropical cyclones on the NYSCWM.