期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于动态规划的Seam Carving裁剪算法
1
作者 杨科林 杨斌 +3 位作者 秦崇良 雷荣军 张永超 屈睿涛 《软件工程与应用》 2024年第3期439-445,共7页
随着科技的发展,图像应用和分享越来越普遍。图像尺寸调整在不同设备和屏幕上的显示非常重要。传统的方法只是简单地复制或计算像素值,而不考虑图像内容的重要性。然而,基于动态规划的Seam Carving裁剪算法提出了一种更优化的方法。该... 随着科技的发展,图像应用和分享越来越普遍。图像尺寸调整在不同设备和屏幕上的显示非常重要。传统的方法只是简单地复制或计算像素值,而不考虑图像内容的重要性。然而,基于动态规划的Seam Carving裁剪算法提出了一种更优化的方法。该算法采用多尺度处理,对不同尺度的图像进行Seam Carving操作,并将处理结果整合起来,以实现更全面、更精细的图像调整。 展开更多
关键词 动态规划 多尺度处理 梯度能量函数 seam carving裁剪算法
下载PDF
基于最小位移可视差的连续Seam Carving算法在图像缩放中的研究
2
作者 崔嘉 宋磊 +2 位作者 陆宏菊 唐明晰 戚萌 《电子与信息学报》 EI CSCD 北大核心 2021年第4期1014-1021,共8页
图像缩放技术要求对图像缩放的同时保证重要信息不丢失且物体边缘不发生扭曲。近年来,Seam Carving及其改进算法得到了广泛的关注和研究。由于采用了离散式最小能量线迭代搜索策略,缩放信息无法在迭代过程中传递导致扭曲现象普遍存在。... 图像缩放技术要求对图像缩放的同时保证重要信息不丢失且物体边缘不发生扭曲。近年来,Seam Carving及其改进算法得到了广泛的关注和研究。由于采用了离散式最小能量线迭代搜索策略,缩放信息无法在迭代过程中传递导致扭曲现象普遍存在。该文针对上述问题提出最小位移可视差(JND)检测算法,能够有效地检测每一次迭代中出现的潜在扭曲信息。能量权重E_(w)能够将JND信息累加传递给后续的迭代过程,从而抑制缩放过程中的边缘扭曲现象。通过JND算法和能量权重,该文首次将离散的Seam Carving模型转变为连续缩放模型。最后,在公共数据集RetargetMe上与最新的图像缩放算法进行多组对比实验,验证了所提方法的有效性和先进性。 展开更多
关键词 图像缩放 seam carving 最小位移可视差 平均场近似
下载PDF
Analysis of Wavelet Compression and Seam Carving Using the Hausdorf Distance
3
作者 S. Fernando R. Wijesiriwardana 《Journal of Computer and Communications》 2016年第3期35-45,共11页
In this paper image quality of two types of compression methods, wavelet based and seam carving based are investigated. A metric is introduced to compare the image quality under wavelet and seam carving schemes. Meyer... In this paper image quality of two types of compression methods, wavelet based and seam carving based are investigated. A metric is introduced to compare the image quality under wavelet and seam carving schemes. Meyer, Coiflet 2 and Jpeg2000 wavelet based methods are used as the wavelet based methods. Hausdorf distance based metric (HDM) is proposed and used for the comparison of the two compression methods instead of model based matching techniques and correspondence-based matching techniques, because there is no pairing of points in the two sets being compared. In addition entropy based metric (EM) or peak signal to noise ration based metric (PSNRM) cannot be used to compare the two schemes as the seam carving tends to deform the objects. The wavelet compressed images with different compression percentages were analyzed with HDM and EM and it was observed that HDM follows the EM/PSNRM for wavelet based compression methods. Then HDM is used to compare the wavelet and seam carved images for different compression percentages. The initial results showed that HDM is better metric for comparing wavelet based and seam carved images. 展开更多
关键词 Wavelet Compression seam carving Haudorf Transformation Jpeg 2000 METRIC
下载PDF
融入混合注意力的低缩放因子SeamCarving篡改检测算法
4
作者 赵洁 常皓婵 武斌 《智能科学与技术学报》 CSCD 2024年第2期244-252,共9页
针对现有的Seam Carving篡改检测算法对于低缩放因子情况存在检测精度不高、鲁棒性不强的问题,提出一种融入混合注意力机制的Seam Carving篡改检测算法。首先,利用BayarConv2D约束卷积对图像进行预处理,充分学习图像的噪声特征,并通过... 针对现有的Seam Carving篡改检测算法对于低缩放因子情况存在检测精度不高、鲁棒性不强的问题,提出一种融入混合注意力机制的Seam Carving篡改检测算法。首先,利用BayarConv2D约束卷积对图像进行预处理,充分学习图像的噪声特征,并通过矩阵乘法与RGB图像进行特征融合;然后,采用ResNet作为骨干网络进行特征学习,引入残差传播和残差反馈机制,凸显Seam Carving的操作痕迹;最后,利用混合注意力机制同时提取相邻位置和通道之间的特征,更好地捕捉全局特征,进而将其输入全连接层进行分类。实验结果表明,在BOSSbase1.01数据集上,当缩放因子为1%和9%时,检测精度分别达到了89.48%和97.94%,优于现有主流方法,同时具有较低的计算复杂度和较好的鲁棒性,能够抵抗JPEG压缩攻击。 展开更多
关键词 混合注意力机制 图像取证 seam carving检测 低缩放因子
下载PDF
Cluster-Based Saliency-Guided Content-Aware Image Retargeting
5
作者 Li-Wei Kang Ching-Yu Tseng +2 位作者 Chao-Long Jheng Ming-Fang Weng Chao-Yung Hsu 《Journal of Electronic Science and Technology》 CAS CSCD 2017年第2期141-146,共6页
Straightforward image resizing operators without considering image contents (e.g., uniform scaling) cannot usually produce satisfactory results, while content-aware image retargeting aims to arbitrarily change image... Straightforward image resizing operators without considering image contents (e.g., uniform scaling) cannot usually produce satisfactory results, while content-aware image retargeting aims to arbitrarily change image size while preserving visually prominent features. In this paper, a cluster-based saliency-guided seam carving algorithm for content- aware image retargeting is proposed. To cope with the main drawback of the original seam carving algorithm relying on only gradient-based image importance map, we integrate a gradient-based map and a cluster-based saliency map to generate a more reliable importance map, resulting in better single image retargeting results. Experimental results have demonstrated the efficacy of the proposed algorithm. 展开更多
关键词 Index Terms--Content-aware image retargeting image resizing multimedia adaptation saliency detection seam carving.
下载PDF
Review:A survey for image resizing 被引量:2
6
作者 Xiao LIN Ying-lan MA +1 位作者 Li-zhuang MA Rui-ling ZHANG 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2014年第9期697-716,共20页
Image resizing is a key technique for displaying images on different devices, and has attracted much attention in the past few years. This paper reviews the image resizing methods proposed in recent years, gives a det... Image resizing is a key technique for displaying images on different devices, and has attracted much attention in the past few years. This paper reviews the image resizing methods proposed in recent years, gives a detailed comparison on their performance, and reveals the main challenges raised in several important issues such as preserving an important region, minimizing distortions, and improving efficiency. Furthermore, this paper discusses the research trends and points out the possible hotspots in this field. We believe this survey can give some guidance for researchers from relevant research areas, offering them an overall and novel view. 展开更多
关键词 Image resizing Saliency measures CROPPING seam carving WARPING
原文传递
Image resizing by reconstruction from deep features 被引量:1
7
作者 Dov Danon Moab Arar +1 位作者 Daniel Cohen-Or Ariel Shamir 《Computational Visual Media》 EI CSCD 2021年第4期453-466,共14页
Traditional image resizing methods usually work in pixel space and use various saliency measures.The challenge is to adjust the image shape while trying to preserve important content.In this paper we perform image res... Traditional image resizing methods usually work in pixel space and use various saliency measures.The challenge is to adjust the image shape while trying to preserve important content.In this paper we perform image resizing in feature space using the deep layers of a neural network containing rich important semantic information.We directly adjust the image feature maps,extracted from a pre-trained classification network,and reconstruct the resized image using neuralnetwork based optimization.This novel approach leverages the hierarchical encoding of the network,and in particular,the high-level discriminative power of its deeper layers,that can recognize semantic regions and objects,thereby allowing maintenance of their aspect ratios.Our use of reconstruction from deep features results in less noticeable artifacts than use of imagespace resizing operators.We evaluate our method on benchmarks,compare it to alternative approaches,and demonstrate its strengths on challenging images. 展开更多
关键词 image retargeting RECONSTRUCTION deep seam carving image resizing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部