In this paper,the advantage of using numerical models with the strength reduction method(SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated.A coal mine under variable topography from ...In this paper,the advantage of using numerical models with the strength reduction method(SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated.A coal mine under variable topography from the Central Appalachian region is used as a case study.At this mine,unexpected roof conditions were encountered during development below previously mined panels.Stress mapping and observation of ground conditions were used to quantify the success of entry support systems in three room-and-pillar panels.Numerical model analyses were initially conducted to estimate the stresses induced by the multiple-seam mining at the locations of the affected entries.The SRM was used to quantify the stability factor of the supported roof of the entries at selected locations.The SRM-calculated stability factors were compared with observations made during the site visits,and the results demonstrate that the SRM adequately identifies the unexpected roof conditions in this complex case.It is concluded that the SRM can be used to effectively evaluate the likely success of roof supports and the stability condition of entries in coal mines.展开更多
This paper shows that fabric and seam strength loss (%) of the selected denim trousers occurred for different washing applications. At first, a commonly used denim fabric of 12.5 Oz/yd<sup>2</sup> was sele...This paper shows that fabric and seam strength loss (%) of the selected denim trousers occurred for different washing applications. At first, a commonly used denim fabric of 12.5 Oz/yd<sup>2</sup> was selected to make the trousers containing two types of seam <em>i.e.</em> superimposed and lapped seam. Then bleach, enzyme and acid wash were applied on the produced trousers and fabric & seam strength loss were determined by using related standard and equipment. It was found that fabric strength loss is higher in case of acid wash and the loss of seam strength is higher in case of enzyme wash.展开更多
In the early 1990 s, the Foundation for Science and Technology of Rio Grande do Sul State(CIENTEC)developed a pioneering study in Brazil, related to the simultaneous mining of multiple coal seams.One of the activities...In the early 1990 s, the Foundation for Science and Technology of Rio Grande do Sul State(CIENTEC)developed a pioneering study in Brazil, related to the simultaneous mining of multiple coal seams.One of the activities included detailed studies on the geomechanical characterization of materials present in the Irapua coal seam, under exploitation in the A-Sangao Mine, located near the city of Criciuma-SC,within the South-Catarinense coalfield. The goal of the laboratory tests was to define the behavior of the uniaxial compressive strength of the Irapua coal seam and establish a first approximation for the in situ strength value of this coal seam, since existing knowledge is solely based on practical mining experience over the years. Large samples of the coal seam were collected, using special techniques to maintain the integrity of the material, and a set of 56 uniaxial compression tests in cubic specimens, with side length ranging from 4.5 to 31 cm, were conducted in laboratory. This paper describes the experimental techniques used in the assays, and also presents the uniaxial compression strength results obtained.Moreover, important aspects of this type of study are considered, highlighting the size effect for the carbonaceous bed and the estimation of in situ strength values for the Irapua coal seam.展开更多
文摘In this paper,the advantage of using numerical models with the strength reduction method(SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated.A coal mine under variable topography from the Central Appalachian region is used as a case study.At this mine,unexpected roof conditions were encountered during development below previously mined panels.Stress mapping and observation of ground conditions were used to quantify the success of entry support systems in three room-and-pillar panels.Numerical model analyses were initially conducted to estimate the stresses induced by the multiple-seam mining at the locations of the affected entries.The SRM was used to quantify the stability factor of the supported roof of the entries at selected locations.The SRM-calculated stability factors were compared with observations made during the site visits,and the results demonstrate that the SRM adequately identifies the unexpected roof conditions in this complex case.It is concluded that the SRM can be used to effectively evaluate the likely success of roof supports and the stability condition of entries in coal mines.
文摘This paper shows that fabric and seam strength loss (%) of the selected denim trousers occurred for different washing applications. At first, a commonly used denim fabric of 12.5 Oz/yd<sup>2</sup> was selected to make the trousers containing two types of seam <em>i.e.</em> superimposed and lapped seam. Then bleach, enzyme and acid wash were applied on the produced trousers and fabric & seam strength loss were determined by using related standard and equipment. It was found that fabric strength loss is higher in case of acid wash and the loss of seam strength is higher in case of enzyme wash.
文摘In the early 1990 s, the Foundation for Science and Technology of Rio Grande do Sul State(CIENTEC)developed a pioneering study in Brazil, related to the simultaneous mining of multiple coal seams.One of the activities included detailed studies on the geomechanical characterization of materials present in the Irapua coal seam, under exploitation in the A-Sangao Mine, located near the city of Criciuma-SC,within the South-Catarinense coalfield. The goal of the laboratory tests was to define the behavior of the uniaxial compressive strength of the Irapua coal seam and establish a first approximation for the in situ strength value of this coal seam, since existing knowledge is solely based on practical mining experience over the years. Large samples of the coal seam were collected, using special techniques to maintain the integrity of the material, and a set of 56 uniaxial compression tests in cubic specimens, with side length ranging from 4.5 to 31 cm, were conducted in laboratory. This paper describes the experimental techniques used in the assays, and also presents the uniaxial compression strength results obtained.Moreover, important aspects of this type of study are considered, highlighting the size effect for the carbonaceous bed and the estimation of in situ strength values for the Irapua coal seam.