An open reading frame (lcn61) of lymphocystis disease virus China (LCDV-cn), probably responsible for encoding putative zinc-finger proteins was amplified and inserted into pET24a (+) vector. Then it expressed in E. c...An open reading frame (lcn61) of lymphocystis disease virus China (LCDV-cn), probably responsible for encoding putative zinc-finger proteins was amplified and inserted into pET24a (+) vector. Then it expressed in E. coli BL21 (DE3), and His-tag fusion protein of high yield was obtained. It was found that the fusion protein existed in E. coli mainly as inclusion bodies. The bioinformatics analysis indicates that LCN61 is C2H2 type zinc-finger protein containing four C2H2 zinc-finger motifs. This work provides a theory for functional research of lcn61 gene.展开更多
Flax is a crucial fiber crop that exhibits excellent textile properties and serves as a model plant for investigating phloem fiber development. The regulation of multiple genes significantly influences fiber developme...Flax is a crucial fiber crop that exhibits excellent textile properties and serves as a model plant for investigating phloem fiber development. The regulation of multiple genes significantly influences fiber development, notably involving NAC(NAM, ATAF1/2, CUC2) transcription factors in forming the fiber secondary cell wall(SCW).Overexpression of LuNAC61 in flax resulted in sparse top meristematic zone leaves and significantly reduced stem cellulose content. Scanning electron microscopy and staining observations revealed a significant reduction in fiber bundles. β-Glucuronidase(GUS) staining analysis demonstrated high activity of the LuNAC61 promoter in the bast fibers of the flax stem. Additionally, several members of the LuPLATZ and LuCesA families exhibited significant coexpression with LuNAC61. Subcellular localization indicated the presence of LuPLATZ24 protein in the nucleus and cytoplasm, LuNAC61 protein exclusively in the nucleus, and LuCesA10 in the nucleus and endoplasmic reticulum. LuPLATZ24 positively regulates LuNAC61, whereas LuNAC61 negatively affects LuCesA10, suggesting the involvement of a metabolic network in regulating flax fiber development. In conclusion, this study provides a critical opportunity for a comprehensive and in-depth analysis of the mechanisms governing flax fiber development and the potential use of biotechnology to enhance flax fiber yield.展开更多
Cardiovascular disease, nervous system disorders, and cancer in association with other diseases such as diabetes mellitus result in greater than sixty percent of the global annual deaths. These noncommunicable disease...Cardiovascular disease, nervous system disorders, and cancer in association with other diseases such as diabetes mellitus result in greater than sixty percent of the global annual deaths. These noncommunicable diseases also affect at least one-third of the population in low and middle-income countries and lead to hypertension, elevated cholesterol, malignancy, and neurodegenerative disorders such as Alzheimer's disease and stroke. With the climbing lifespan of the world's population, increased prevalence of these disorders is expected requiring the development of new therapeutic strategies against these disabling disease entities. Targeting stem cellproliferation for cardiac disease, vascular disorders, cancer, and neurodegenerative disorders is receiving great enthusiasm, especially those that focus upon SIRT1, a mammalian homologue of the yeast silent information regulator-2. Modulation of the cellular activity of SIRT1 can involve oversight by nicotinamide/nicotinic acid mononucleotide adenylyltransferase, mammalian forkhead transcription factors, mechanistic of rapamycin pathways, and cysteine-rich protein 61, connective tissue growth factor, and nephroblastoma over-expressed gene family members that can impact cytoprotective outcomes. Ultimately, the ability of SIRT1 to control the programmed cell death pathways of apoptosis and autophagy can determine not only cardiac, vascular, and neuronal stem cell development and longevity, but also the onset of tumorigenesis and the resistance against chemotherapy. SIRT1 therefore has a critical role and holds exciting prospects for new therapeutic strategies that can offer reparative processes for cardiac, vascular, and nervous system degenerative disorders as well as targeted control of aberrant cell growth during cancer.展开更多
Objectives It is unclear whether G protein-coupled receptor 61(GPR61)affecting body weight,plays a role in the association between birth weight and weather.This study aimed to assess the effects of prenatal weather an...Objectives It is unclear whether G protein-coupled receptor 61(GPR61)affecting body weight,plays a role in the association between birth weight and weather.This study aimed to assess the effects of prenatal weather and GPR61 on birth weight.Methods A total of 567 mother-newborn pairs were recruited in Houzhai Center Hospital during2011–2012.We detected the maternal and neonatal GPR61 promoter methylation levels,and obtained meteorological and air pollution data.Results A positive association was observed between maternal and neonatal GPR61 methylation levels,and both of them were affected by precipitation,relative humidity(RH)and daily temperature range(DTR).Birth weight was associated negatively with RH and positively with DTR(P<0.05).A significant association was observed between birth weight and neonatal GPR61 methylation.We observed that maternal GPR61 methylation seemed to modify associations between weather and birth weight(P_(interaction)<0.10),while neonatal GPR61 methylation mediated the effects of RH and DTR on birth weight(P<0.05).Conclusions Our findings revealed the significant associations among prenatal weather,GPR61 methylation and birth weight.Maternal GPR61 methylation may modify the susceptibility of birth weight to prenatal weather conditions,while neonatal GPR61 methylation may be a bridge of the effects of prenatal RH and DTR on birth weight.展开更多
基金Supported by High Technology Research and Development Program of China (863 Program, No. 2006AA100309)
文摘An open reading frame (lcn61) of lymphocystis disease virus China (LCDV-cn), probably responsible for encoding putative zinc-finger proteins was amplified and inserted into pET24a (+) vector. Then it expressed in E. coli BL21 (DE3), and His-tag fusion protein of high yield was obtained. It was found that the fusion protein existed in E. coli mainly as inclusion bodies. The bioinformatics analysis indicates that LCN61 is C2H2 type zinc-finger protein containing four C2H2 zinc-finger motifs. This work provides a theory for functional research of lcn61 gene.
基金supported by the National Natural Science Foundation of China(31801409)the Safe Preservation and Accurate Identification of Flax Germplasm Resources in South,China(23ZH174)+2 种基金the Construction of Modern Agricultural Industrial Technology System,China(CARS-16-E01)the Protection and Utilization of Crop Germplasm Resources,China(2016NWB044)the National Science and Technology Resource Sharing Service Platform Project,China(NCGRC-2020-15)。
文摘Flax is a crucial fiber crop that exhibits excellent textile properties and serves as a model plant for investigating phloem fiber development. The regulation of multiple genes significantly influences fiber development, notably involving NAC(NAM, ATAF1/2, CUC2) transcription factors in forming the fiber secondary cell wall(SCW).Overexpression of LuNAC61 in flax resulted in sparse top meristematic zone leaves and significantly reduced stem cellulose content. Scanning electron microscopy and staining observations revealed a significant reduction in fiber bundles. β-Glucuronidase(GUS) staining analysis demonstrated high activity of the LuNAC61 promoter in the bast fibers of the flax stem. Additionally, several members of the LuPLATZ and LuCesA families exhibited significant coexpression with LuNAC61. Subcellular localization indicated the presence of LuPLATZ24 protein in the nucleus and cytoplasm, LuNAC61 protein exclusively in the nucleus, and LuCesA10 in the nucleus and endoplasmic reticulum. LuPLATZ24 positively regulates LuNAC61, whereas LuNAC61 negatively affects LuCesA10, suggesting the involvement of a metabolic network in regulating flax fiber development. In conclusion, this study provides a critical opportunity for a comprehensive and in-depth analysis of the mechanisms governing flax fiber development and the potential use of biotechnology to enhance flax fiber yield.
基金American Diabetes AssociationAmerican Heart Association+3 种基金NIH NIEHSNIH NIANIH NINDSNIH ARRA
文摘Cardiovascular disease, nervous system disorders, and cancer in association with other diseases such as diabetes mellitus result in greater than sixty percent of the global annual deaths. These noncommunicable diseases also affect at least one-third of the population in low and middle-income countries and lead to hypertension, elevated cholesterol, malignancy, and neurodegenerative disorders such as Alzheimer's disease and stroke. With the climbing lifespan of the world's population, increased prevalence of these disorders is expected requiring the development of new therapeutic strategies against these disabling disease entities. Targeting stem cellproliferation for cardiac disease, vascular disorders, cancer, and neurodegenerative disorders is receiving great enthusiasm, especially those that focus upon SIRT1, a mammalian homologue of the yeast silent information regulator-2. Modulation of the cellular activity of SIRT1 can involve oversight by nicotinamide/nicotinic acid mononucleotide adenylyltransferase, mammalian forkhead transcription factors, mechanistic of rapamycin pathways, and cysteine-rich protein 61, connective tissue growth factor, and nephroblastoma over-expressed gene family members that can impact cytoprotective outcomes. Ultimately, the ability of SIRT1 to control the programmed cell death pathways of apoptosis and autophagy can determine not only cardiac, vascular, and neuronal stem cell development and longevity, but also the onset of tumorigenesis and the resistance against chemotherapy. SIRT1 therefore has a critical role and holds exciting prospects for new therapeutic strategies that can offer reparative processes for cardiac, vascular, and nervous system degenerative disorders as well as targeted control of aberrant cell growth during cancer.
基金supported by the National Natural Science Foundation of China[81972981&82003401&81673116]the Scientific and Technological Project of Henan Province[202102310622]the Opening Foundation of National Health Commission Key Laboratory of Birth Defects Prevention&Henan Key Laboratory of Population Defects Prevention[ZD202001]。
文摘Objectives It is unclear whether G protein-coupled receptor 61(GPR61)affecting body weight,plays a role in the association between birth weight and weather.This study aimed to assess the effects of prenatal weather and GPR61 on birth weight.Methods A total of 567 mother-newborn pairs were recruited in Houzhai Center Hospital during2011–2012.We detected the maternal and neonatal GPR61 promoter methylation levels,and obtained meteorological and air pollution data.Results A positive association was observed between maternal and neonatal GPR61 methylation levels,and both of them were affected by precipitation,relative humidity(RH)and daily temperature range(DTR).Birth weight was associated negatively with RH and positively with DTR(P<0.05).A significant association was observed between birth weight and neonatal GPR61 methylation.We observed that maternal GPR61 methylation seemed to modify associations between weather and birth weight(P_(interaction)<0.10),while neonatal GPR61 methylation mediated the effects of RH and DTR on birth weight(P<0.05).Conclusions Our findings revealed the significant associations among prenatal weather,GPR61 methylation and birth weight.Maternal GPR61 methylation may modify the susceptibility of birth weight to prenatal weather conditions,while neonatal GPR61 methylation may be a bridge of the effects of prenatal RH and DTR on birth weight.