期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于二次表示的空间目标图像分类
被引量:
3
1
作者
蒋飞云
孙锐
+1 位作者
张旭东
李超
《电子与信息学报》
EI
CSCD
北大核心
2013年第5期1247-1251,共5页
针对空间目标图像的特点,该文提出一种基于局部不变特征的空间目标图像分类方法。该方法首先提取每幅图像的局部不变特征,利用混合高斯模型(GMM)建立全局的视觉模式,然后依据最大后验概率匹配局部特征和视觉模式来构造整个训练集图像的...
针对空间目标图像的特点,该文提出一种基于局部不变特征的空间目标图像分类方法。该方法首先提取每幅图像的局部不变特征,利用混合高斯模型(GMM)建立全局的视觉模式,然后依据最大后验概率匹配局部特征和视觉模式来构造整个训练集图像的共现矩阵,采用概率潜在语义分析(PLSA)模型得到图像的潜在类别表示来实现图像的二次表示,最后利用SVM算法实现分类。实验结果验证了该方案的有效性。
展开更多
关键词
空间目标分类
局部不变特征
视觉模式
二次表示
下载PDF
职称材料
题名
基于二次表示的空间目标图像分类
被引量:
3
1
作者
蒋飞云
孙锐
张旭东
李超
机构
合肥工业大学计算机与信息学院
奇瑞汽车博士后工作站
出处
《电子与信息学报》
EI
CSCD
北大核心
2013年第5期1247-1251,共5页
基金
安徽省自然科学基金(11040606M149)资助课题
文摘
针对空间目标图像的特点,该文提出一种基于局部不变特征的空间目标图像分类方法。该方法首先提取每幅图像的局部不变特征,利用混合高斯模型(GMM)建立全局的视觉模式,然后依据最大后验概率匹配局部特征和视觉模式来构造整个训练集图像的共现矩阵,采用概率潜在语义分析(PLSA)模型得到图像的潜在类别表示来实现图像的二次表示,最后利用SVM算法实现分类。实验结果验证了该方案的有效性。
关键词
空间目标分类
局部不变特征
视觉模式
二次表示
Keywords
Space target categorization
Local invariant features
Visual mode
second reoresentaiton
分类号
TN911.73 [电子电信—通信与信息系统]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于二次表示的空间目标图像分类
蒋飞云
孙锐
张旭东
李超
《电子与信息学报》
EI
CSCD
北大核心
2013
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部