Quantum coherence serves as a defining characteristic of quantum mechanics,finding extensive applications in quantum computing and quantum communication processing.This study explores quantum block coherence in the co...Quantum coherence serves as a defining characteristic of quantum mechanics,finding extensive applications in quantum computing and quantum communication processing.This study explores quantum block coherence in the context of projective measurements,focusing on the quantification of such coherence.Firstly,we define the correlation function between the two general projective measurements P and Q,and analyze the connection between sets of block incoherent states related to two compatible projective measurements P and Q.Secondly,we discuss the measure of quantum block coherence with respect to projective measurements.Based on a given measure of quantum block coherence,we characterize the existence of maximal block coherent states through projective measurements.This research integrates the compatibility of projective measurements with the framework of quantum block coherence,contributing to the advancement of block coherence measurement theory.展开更多
The perfect hybrid vector vortex beam(PHVVB)with helical phase wavefront structure has aroused significant concern in recent years,as its beam waist does not expand with the topological charge(TC).In this work,we inve...The perfect hybrid vector vortex beam(PHVVB)with helical phase wavefront structure has aroused significant concern in recent years,as its beam waist does not expand with the topological charge(TC).In this work,we investigate the spatial quantum coherent modulation effect with PHVVB based on the atomic medium,and we observe the absorption characteristic of the PHVVB with different TCs under variant magnetic fields.We find that the transmission spectrum linewidth of PHVVB can be effectively maintained regardless of the TC.Still,the width of transmission peaks increases slightly as the beam size expands in hot atomic vapor.This distinctive quantum coherence phenomenon,demonstrated by the interaction of an atomic medium with a hybrid vector-structured beam,might be anticipated to open up new opportunities for quantum coherence modulation and accurate magnetic field measurement.展开更多
Quantum coherence is a basic concept in quantum mechanics, representing one of the most fundamental characteristics that distinguishes quantum mechanics from classical physics. Quantum coherence is the basis for multi...Quantum coherence is a basic concept in quantum mechanics, representing one of the most fundamental characteristics that distinguishes quantum mechanics from classical physics. Quantum coherence is the basis for multi-particle interference and quantum entanglement. It is also the essential ingredient for various physical phenomena in quantum optics, quantum information, etc. In recent years, with the proposal of a quantum coherence measurement scheme based on a resource theory framework, quantum coherence as a quantum resource has been extensively investigated. This article reviews the resource theories of quantum coherence and introduces the important applications of quantum coherence in quantum computing,quantum information, and interdisciplinary fields, particularly in quantum thermodynamics and quantum biology. Quantum coherence and its applications are still being explored and developed. We hope this review can provide inspiration for relevant research.展开更多
An open quantum battery(QB)model of a single qubit system charging in a coherent auxiliary bath(CAB)consisting of a series of independent coherent ancillae is considered.According to the collision charging protocol we...An open quantum battery(QB)model of a single qubit system charging in a coherent auxiliary bath(CAB)consisting of a series of independent coherent ancillae is considered.According to the collision charging protocol we derive a quantum master equation and obtain the analytical solution of QB in a steady state.We find that the full charging capacity(or the maximal extractable work(MEW))of QB,in the weak QB-ancilla coupling limit,is positively correlated with the coherence magnitude of ancilla.Combining with the numerical simulations we compare with the charging properties of QB at finite coupling strength,such as the MEW,average charging power and the charging efficiency,when considering the bath to be a thermal auxiliary bath(TAB)and a CAB,respectively.We find that when the QB with CAB,in the weak coupling regime,is in fully charging,both its capacity and charging efficiency can go beyond its classical counterpart,and they increase with the increase of coherence magnitude of ancilla.In addition,the MEW of QB in the regime of relative strong coupling and strong coherent magnitude shows the oscillatory behavior with the charging time increasing,and the first peak value can even be larger than the full charging MEW of QB.This also leads to a much larger average charging power than that of QB with TAB in a short-time charging process.These features suggest that with the help of quantum coherence of CAB it becomes feasible to switch the charging schemes between the long-time slow charging protocol with large capacity and high efficiency and the short-time rapid charging protocol with highly charging power only by adjusting the coupling strength of QB-ancilla.This work clearly demonstrates that the quantum coherence of bath can not only serve as the role of“fuel”of QB to be utilized to improve the QB's charging performance but also provide an alternative way to integrate the different charging protocols into a single QB.展开更多
A quantum steering ellipsoid(QSE)is a visual characterization for bipartite qubit systems,and it is also a novel avenue for describing and detecting quantum correlations.Herein,by using a QSE,we visualize and witness ...A quantum steering ellipsoid(QSE)is a visual characterization for bipartite qubit systems,and it is also a novel avenue for describing and detecting quantum correlations.Herein,by using a QSE,we visualize and witness the first-order coherence(FOC),Bell nonlocality(BN)and purity under non-inertial frames.Also,the collective influences of the depolarizing channel and the non-coherence-generating channel(NCGC)on the FOC,BN and purity are investigated in the QSE formalism.The results reveal that the distance from the center of the QSE to the center of the Bloch sphere visualizes the FOC of a bipartite system,the lengths of the QSE semiaxis visualize the BN,and the QSE's shape and position dominate the purity of the system.One can capture the FOC,BN and purity via the shape and position of the QSE in the non-inertial frame.The depolarizing channel(the NCGC)gives rise to the shrinking and degradation(the periodical oscillation)of the QSE.One can use these traits to visually characterize and detect the FOC,BN and purity under the influence of external noise.Of particular note is that the condition for the QSE to achieve the center of the Bloch sphere cannot be influenced by the depolarizing channel and the NCGC.The characterization shows that the conditions for the disappearance of the FOC are invariant under the additional influences of the depolarizing channel and NCGC.展开更多
We show that the freezing phenomenon,exhibited by a specific class of two-qubit state under local nondissipative decoherent evolutions,is a common feature of the relative entropy measure of quantum coherence and corre...We show that the freezing phenomenon,exhibited by a specific class of two-qubit state under local nondissipative decoherent evolutions,is a common feature of the relative entropy measure of quantum coherence and correlation.All those measurement outcomes,preserve a constant value in the considered noisy channels,but the condition,property and mechanism of the freezing phenomenon for quantum coherence are different from those of the quantum correlation.展开更多
In this paper, we discuss quantum uncertainty relations of quantum coherence through a different method from Ref. [52]. Some lower bounds with parameters and their minimal bounds are obtained. Moreover, we find that f...In this paper, we discuss quantum uncertainty relations of quantum coherence through a different method from Ref. [52]. Some lower bounds with parameters and their minimal bounds are obtained. Moreover, we find that for two pairs of measurement bases with the same maximum overlap, quantum uncertainty relations and lower bounds with parameters are different, but the minimal bounds are the same. In addition, we discuss the dynamics of quantum uncertainty relations of quantum coherence and their lower bounds under the amplitude damping channel(ADC). We find that the ADC will change the uncertainty relations and their lower bounds, and their tendencies depend on the initial state.展开更多
The quantum entanglement,discord,and coherence dynamics of two spins in the model of a spin coupled to a spin bath through an intermediate spin are studied.The effects of the important physical parameters including th...The quantum entanglement,discord,and coherence dynamics of two spins in the model of a spin coupled to a spin bath through an intermediate spin are studied.The effects of the important physical parameters including the coupling strength of two spins,the interaction strength between the intermediate spin and the spin bath,the number of bath spins and the temperature of the system on quantum coherence and correlation dynamics are discussed in different cases.The frozen quantum discord can be observed whereas coherence does not when the initial state is the Bell-diagonal state.At finite temperature,we find that coherence is more robust than quantum discord,which is better than entanglement,in terms of resisting the influence of environment.Therefore,quantum coherence is more tenacious than quantum correlation as an important resource.展开更多
We investigate nonlocal advantage of quantum coherence(NAQC)in a correlated dephasing channel modeled by themultimode bosonic reservoir.We obtain analytically the dephasing and memory factors of this channel for the r...We investigate nonlocal advantage of quantum coherence(NAQC)in a correlated dephasing channel modeled by themultimode bosonic reservoir.We obtain analytically the dephasing and memory factors of this channel for the reservoirhaving a Lorentzian spectral density,and analyze how they affect the NAQC defined by the l1 norm and relative entropy.It is shown that the memory effects of this channel on NAQC are state-dependent,and they suppress noticeably the rapiddecay of NAQC for the family of input Bell-like states with one excitation.For the given transmission time of each qubit,we also obtain the regions of the dephasing and memory factors during which there is NAQC in the output states.展开更多
Some basic physics of burgeoning quantum neuroscience is described. Anatomy of the neuron suggests that nonsynaptic mechanisms of signal transmittance occur via electric current acceleration and companion electromagne...Some basic physics of burgeoning quantum neuroscience is described. Anatomy of the neuron suggests that nonsynaptic mechanisms of signal transmittance occur via electric current acceleration and companion electromagnetic field fluctuation. I have named this mechanism of solution chemistry the ebb effect. Phase-locking between neural structure and electric fields that are emergent from cellular EM field fluctuations, in addition to feedback loops within neural networks, are the probable driver of macroscopic oscillation and flow shapes in the brain. CEMI (conscious electromagnetic information) theory is a promising framework for explaining intentionality and the spectrum of arousal as EM field effects. Relatively low frequency electromagnetic radiation is emitted by the accelerating electric currents of neurons. It is hypothesized that this EM radiation superpositions with molecular structure as it spreads to comprise percepts, the hybrid wavelengths of which form subjective images while wavelength vibrations result in subjective feel. These superposition arrays are termed a coherence field, and in combination with the synchronizing influence of quantum entanglement and electromagnetic fluctuations may constitute much of awareness’ substance. If conclusively verified, coherence field theory should have significance ranging from the treatment of perceptual disorders such as anosognosia to advancing foundational constructs like atomic theory.展开更多
We study quantum synchronization under the nonequilibrium reservoirs.We consider a two-qubit XXZ chain coupled independently to their own reservoirs modeled by the collisional model.Two reservoir particles,initially p...We study quantum synchronization under the nonequilibrium reservoirs.We consider a two-qubit XXZ chain coupled independently to their own reservoirs modeled by the collisional model.Two reservoir particles,initially prepared in a thermal state or a state with coherence,are correlated through a unitary transformation and afterward interact locally with the two quantum subsystems.We study the quantum effect of reservoir on synchronous dynamics of system.By preparing different reservoir initial states or manipulating the reservoir particles coupling and the temperature gradient,we find that quantum entanglement of reservoir is the key to control quantum synchronization of system qubits.展开更多
A quantum teleportation network involving multiple users is essential for future quantum internet.So far,controlled quantum teleportation has been demonstrated in a three-user network.However,versatile and controlled ...A quantum teleportation network involving multiple users is essential for future quantum internet.So far,controlled quantum teleportation has been demonstrated in a three-user network.However,versatile and controlled quantum teleportation network involving more users is in demand,which satisfies different combinations of users for practical requirements.Here we propose a highly versatile and controlled teleportation network that can switch among various combinations of different users.We use a single continuous-variable six-partite Greenberger-Horne-Zeilinger(GHZ)state to realize such a task by choosing the different measurement and feedback operations.The controlled teleportation network,which includes one sub-network,two sub-networks and three sub-networks,can be realized for different application of user combinations.Furthermore,the coherent feedback control(CFC)can manipulate and improve the teleportation performance.Our approach is flexible and scalable,and would provide a versatile platform for demonstrations of complex quantum communication and quantum computing protocols.展开更多
A modified correlated spectroscopy (COSY) revamped with asymmetric Z-gradient echo detection sequence was designed to investigate the influence of diffusion hehaviour on intermolecular double-quantum coherence signa...A modified correlated spectroscopy (COSY) revamped with asymmetric Z-gradient echo detection sequence was designed to investigate the influence of diffusion hehaviour on intermolecular double-quantum coherence signal attenuation during the pre-acquisition period. Theoretical formulas were deduced and experimental measurements and simulations were performed. It is found that the diffusion behaviour of intermolecular double-quantum coherence in the pre-acquisition period may be different from that of conventional single-quantum coherence, depending on the relative orientation of diffusion weighting gradients to coherence selection gradients. When the orientation of the diffusion weighting gradients is parallel or anti-parallel to the orientation of the coherence selection gradients, the diffusion is modulated by the distant dipolar field. This study is helpful for understanding the signal properties in intermolecular double-quantum coherence magnetic resonance imaging.展开更多
This paper analyses the heteronuclear Cosy Revamped by Asymmetric Z-gradient Echo Detection pulse sequence. General theoretical expressions of the pulse sequence with arbitrary flip angles were derived by using dipola...This paper analyses the heteronuclear Cosy Revamped by Asymmetric Z-gradient Echo Detection pulse sequence. General theoretical expressions of the pulse sequence with arbitrary flip angles were derived by using dipolar field treatment and signals originating from heteronuclear intermolecular single-quantum coherences (iSQCs) in highly-polarized two spin-1/2 systems were mainly discussed in order to find the optimal flip angles. The results show that signals from heteronuclear iSQCs decay slower than those from intermolecular double-quantum coherences or intermolecular zero-quantum coherences. Magical angle experiments validate that the signals are from heteronuclear iSQCs and insensitive to the imperfection of radio-frequency flip angles. All experimental observations are in excellent agreement with theoretical predictions. The quantum-mechanical treatment leads to similar predictions to the dipolar field treatment.展开更多
We present a theoretical study of quantum coherent effects in a A-three-level system with a strong bichromatic coupling field and a weak probe field. When one component of the strong bichromatic coupling field is reso...We present a theoretical study of quantum coherent effects in a A-three-level system with a strong bichromatic coupling field and a weak probe field. When one component of the strong bichromatic coupling field is resonant with a corresponding transition and the other is detuning with an integer fraction of the Rabi frequency of the resonant field, the absorption spectrum exhibits a series of symmetrical doublets. While two frequencies of the strong bichromatic coupling field are symmetrically detuned from the transition, the position and the relative intensity of the absorption peak are both affected by the coupling field intensity and detuning. An explanation of the spectrum is given in term of the dressed-state formalism.展开更多
Quantum coherence and non-Markovianity of an atom in a dissipative cavity under weak measurement are investigated in this work. We find that: the quantum coherence obviously depends on the initial atomic state, the s...Quantum coherence and non-Markovianity of an atom in a dissipative cavity under weak measurement are investigated in this work. We find that: the quantum coherence obviously depends on the initial atomic state, the strength of the weak measurement and its reversal, the atom-cavity coupling constant and the non-Markovian effect. It is obvious that the weak measurement effect protects the coherence better. The quantum coherence is preserved more efficiently for larger atom- cavity coupling. The stronger the non-Markovian effect is, the more slowly the coherence reduces. The quantum coherence can be effectively protected by means of controlling these physical parameters.展开更多
Bistability behaviors in an optical ring cavity filled with a dense V-type four-level atomic medium are theoretically investigated. It is found that the optical bistability can appear in the negative refraction freque...Bistability behaviors in an optical ring cavity filled with a dense V-type four-level atomic medium are theoretically investigated. It is found that the optical bistability can appear in the negative refraction frequency band, while both the bistability and multi-stability can occur in the positive refraction frequency bands. Therefore, optical bistability can be realized from conventional material to negative index material due to quantum coherence in our scheme.展开更多
Energy transfer is ubiquitous in natural and artificial lightharvesting systems,and coherent energy transfer,a highly efficient energy transfer process,has been accepted to play a vital role in such systems.However,th...Energy transfer is ubiquitous in natural and artificial lightharvesting systems,and coherent energy transfer,a highly efficient energy transfer process,has been accepted to play a vital role in such systems.However,the energy oscillation of coherent energy transfer is exceedingly difficult to capture because of its evanescence due to the interaction with a thermal environment.Here a microscopic quantum model is used to study the time evolution of electrons triggered energy transfer between coherently coupled donoracceptor molecules in scanning tunneling microscope(STM).A series of topics in the plasmonic nanocavity(PNC)coupled donor-acceptor molecules system are discussed,including resonant and nonresonant coherent energy transfer,dephasing assisted energy transfer,PNC coupling strength dependent energy transfer,Fano resonance of coherently coupled donor-acceptor molecules,and polariton-mediated energy transfer.展开更多
We study three important measurements used to identify the quantum correlations between two quantum dots (QDs) mediated by a pair of Majorana fermions (MFs) in a superconducting quantum wire. We find that, in addi...We study three important measurements used to identify the quantum correlations between two quantum dots (QDs) mediated by a pair of Majorana fermions (MFs) in a superconducting quantum wire. We find that, in addition to the quantum discord, the robustness of coherence (ROC) can also be considered as a quantity to measure the quantum correlation for the special case where the quantum entanglement is vanishing. For comparison, we study the quantum correlation between two QDs mediated by other fermions, i.e., regular fermions and superconducting fermions. We find that, when the quantum entanglement is not vanishing, i.e., the concurrence is finite, the detailed difference between the concurrence and ROC can be considered as an important implication for the existence of MFs.展开更多
Energy is often partitioned into heat and work by two independent paths corresponding to the change in the eigenenergies or the probability distributions of a quantum system. The discrepancies of the heat and work for...Energy is often partitioned into heat and work by two independent paths corresponding to the change in the eigenenergies or the probability distributions of a quantum system. The discrepancies of the heat and work for various quantum thermodynamic processes have not been well characterized in literature. Here we show how the work in quantum machines is differentially related to the isochoric, isothermal, and adiabatic processes. We prove that the energy exchanges during the quantum isochoric and isothermal processes are simply depending on the change in the eigenenergies or the probability distributions. However, for a time-dependent system in a non-adiabatic quantum evolution, the transitions between the different quantum states representing the quantum coherence can affect the essential thermodynamic properties, and thus the general definitions of the heat and work should be clarified with respect to the microscopic generic time-dependent system. By integrating the coherence effects in the exactly-solvable dynamics of quantum-spin precession, the internal energy is rigorously transferred as the work in the thermodynamic adiabatic process. The present study demonstrates that the quantum adiabatic process is sufficient but not necessary for the thermodynamic adiabatic process.展开更多
基金partially supported by the National Natural Science Foundations of China (Grant No.11901317)the China Postdoctoral Science Foundation (Grant No.2020M680480)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No.2023MS078)the Beijing Natural Science Foundation (Grant No.1232021)。
文摘Quantum coherence serves as a defining characteristic of quantum mechanics,finding extensive applications in quantum computing and quantum communication processing.This study explores quantum block coherence in the context of projective measurements,focusing on the quantification of such coherence.Firstly,we define the correlation function between the two general projective measurements P and Q,and analyze the connection between sets of block incoherent states related to two compatible projective measurements P and Q.Secondly,we discuss the measure of quantum block coherence with respect to projective measurements.Based on a given measure of quantum block coherence,we characterize the existence of maximal block coherent states through projective measurements.This research integrates the compatibility of projective measurements with the framework of quantum block coherence,contributing to the advancement of block coherence measurement theory.
基金Project supported by the Youth Innovation Promotion Association CASState Key Laboratory of Transient Optics and Photonics Open Topics (Grant No. SKLST202222)
文摘The perfect hybrid vector vortex beam(PHVVB)with helical phase wavefront structure has aroused significant concern in recent years,as its beam waist does not expand with the topological charge(TC).In this work,we investigate the spatial quantum coherent modulation effect with PHVVB based on the atomic medium,and we observe the absorption characteristic of the PHVVB with different TCs under variant magnetic fields.We find that the transmission spectrum linewidth of PHVVB can be effectively maintained regardless of the TC.Still,the width of transmission peaks increases slightly as the beam size expands in hot atomic vapor.This distinctive quantum coherence phenomenon,demonstrated by the interaction of an atomic medium with a hybrid vector-structured beam,might be anticipated to open up new opportunities for quantum coherence modulation and accurate magnetic field measurement.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12175179)the Peng Huaiwu Center for Fundamental Theory (Grant No. 12247103)the Natural Science Basic Research Program of Shaanxi Province (Grant Nos. 2021JCW-19 and 2019JQ-863)。
文摘Quantum coherence is a basic concept in quantum mechanics, representing one of the most fundamental characteristics that distinguishes quantum mechanics from classical physics. Quantum coherence is the basis for multi-particle interference and quantum entanglement. It is also the essential ingredient for various physical phenomena in quantum optics, quantum information, etc. In recent years, with the proposal of a quantum coherence measurement scheme based on a resource theory framework, quantum coherence as a quantum resource has been extensively investigated. This article reviews the resource theories of quantum coherence and introduces the important applications of quantum coherence in quantum computing,quantum information, and interdisciplinary fields, particularly in quantum thermodynamics and quantum biology. Quantum coherence and its applications are still being explored and developed. We hope this review can provide inspiration for relevant research.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11775019 and 62173213)the Natural Science Foundation of Shandong Province,China (Grant No.ZR2011FL009)the Shandong Provincial Science and Technology Support Program of Youth Innovation Team in Colleges (Grant Nos.2019KJN041 and 2020KJN005)。
文摘An open quantum battery(QB)model of a single qubit system charging in a coherent auxiliary bath(CAB)consisting of a series of independent coherent ancillae is considered.According to the collision charging protocol we derive a quantum master equation and obtain the analytical solution of QB in a steady state.We find that the full charging capacity(or the maximal extractable work(MEW))of QB,in the weak QB-ancilla coupling limit,is positively correlated with the coherence magnitude of ancilla.Combining with the numerical simulations we compare with the charging properties of QB at finite coupling strength,such as the MEW,average charging power and the charging efficiency,when considering the bath to be a thermal auxiliary bath(TAB)and a CAB,respectively.We find that when the QB with CAB,in the weak coupling regime,is in fully charging,both its capacity and charging efficiency can go beyond its classical counterpart,and they increase with the increase of coherence magnitude of ancilla.In addition,the MEW of QB in the regime of relative strong coupling and strong coherent magnitude shows the oscillatory behavior with the charging time increasing,and the first peak value can even be larger than the full charging MEW of QB.This also leads to a much larger average charging power than that of QB with TAB in a short-time charging process.These features suggest that with the help of quantum coherence of CAB it becomes feasible to switch the charging schemes between the long-time slow charging protocol with large capacity and high efficiency and the short-time rapid charging protocol with highly charging power only by adjusting the coupling strength of QB-ancilla.This work clearly demonstrates that the quantum coherence of bath can not only serve as the role of“fuel”of QB to be utilized to improve the QB's charging performance but also provide an alternative way to integrate the different charging protocols into a single QB.
基金Project supported by the National Natural Science Foundation of China(Grant No.12175001)the Natural Science Research Key Project of the Education Department of Anhui Province of China(Grant No.KJ2021A0943)+3 种基金the Research Start-up Funding Project of High Level Talent of West Anhui University(Grant No.WGKQ2021048)an Open Project of the Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes(Grant No.FMDI202106)the University Synergy Innovation Program of Anhui Province(Grant No.GXXT-2021-026)the Anhui Provincial Natural Science Foundation(Grant Nos.2108085MA18 and 2008085MA20)。
文摘A quantum steering ellipsoid(QSE)is a visual characterization for bipartite qubit systems,and it is also a novel avenue for describing and detecting quantum correlations.Herein,by using a QSE,we visualize and witness the first-order coherence(FOC),Bell nonlocality(BN)and purity under non-inertial frames.Also,the collective influences of the depolarizing channel and the non-coherence-generating channel(NCGC)on the FOC,BN and purity are investigated in the QSE formalism.The results reveal that the distance from the center of the QSE to the center of the Bloch sphere visualizes the FOC of a bipartite system,the lengths of the QSE semiaxis visualize the BN,and the QSE's shape and position dominate the purity of the system.One can capture the FOC,BN and purity via the shape and position of the QSE in the non-inertial frame.The depolarizing channel(the NCGC)gives rise to the shrinking and degradation(the periodical oscillation)of the QSE.One can use these traits to visually characterize and detect the FOC,BN and purity under the influence of external noise.Of particular note is that the condition for the QSE to achieve the center of the Bloch sphere cannot be influenced by the depolarizing channel and the NCGC.The characterization shows that the conditions for the disappearance of the FOC are invariant under the additional influences of the depolarizing channel and NCGC.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61675115 and 11304179)
文摘We show that the freezing phenomenon,exhibited by a specific class of two-qubit state under local nondissipative decoherent evolutions,is a common feature of the relative entropy measure of quantum coherence and correlation.All those measurement outcomes,preserve a constant value in the considered noisy channels,but the condition,property and mechanism of the freezing phenomenon for quantum coherence are different from those of the quantum correlation.
基金Project supported by the National Natural Science Foundation of China(Grant No.11671244)the Higher School Doctoral Subject Foundation of Ministry of Education of China(Grant No.20130202110001)Fundamental Research Funds for the Central Universities,China(Grant No.2016CBY003)
文摘In this paper, we discuss quantum uncertainty relations of quantum coherence through a different method from Ref. [52]. Some lower bounds with parameters and their minimal bounds are obtained. Moreover, we find that for two pairs of measurement bases with the same maximum overlap, quantum uncertainty relations and lower bounds with parameters are different, but the minimal bounds are the same. In addition, we discuss the dynamics of quantum uncertainty relations of quantum coherence and their lower bounds under the amplitude damping channel(ADC). We find that the ADC will change the uncertainty relations and their lower bounds, and their tendencies depend on the initial state.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61605225,11704238,and 61772295)the Educational Science and Technology Program of Shandong Province,China(Grant No.J18KZ012)the Natural Science Foundation of Shanghai(Grant No.16ZR1448400)。
文摘The quantum entanglement,discord,and coherence dynamics of two spins in the model of a spin coupled to a spin bath through an intermediate spin are studied.The effects of the important physical parameters including the coupling strength of two spins,the interaction strength between the intermediate spin and the spin bath,the number of bath spins and the temperature of the system on quantum coherence and correlation dynamics are discussed in different cases.The frozen quantum discord can be observed whereas coherence does not when the initial state is the Bell-diagonal state.At finite temperature,we find that coherence is more robust than quantum discord,which is better than entanglement,in terms of resisting the influence of environment.Therefore,quantum coherence is more tenacious than quantum correlation as an important resource.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11675129,11774406,and 11934018)the National Key R&D Program of China(Grant Nos.2016YFA0302104 and 2016YFA0300600)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)the Research Program of Beijing Academy of Quantum Information Sciences(Grant No.Y18G07).
文摘We investigate nonlocal advantage of quantum coherence(NAQC)in a correlated dephasing channel modeled by themultimode bosonic reservoir.We obtain analytically the dephasing and memory factors of this channel for the reservoirhaving a Lorentzian spectral density,and analyze how they affect the NAQC defined by the l1 norm and relative entropy.It is shown that the memory effects of this channel on NAQC are state-dependent,and they suppress noticeably the rapiddecay of NAQC for the family of input Bell-like states with one excitation.For the given transmission time of each qubit,we also obtain the regions of the dephasing and memory factors during which there is NAQC in the output states.
文摘Some basic physics of burgeoning quantum neuroscience is described. Anatomy of the neuron suggests that nonsynaptic mechanisms of signal transmittance occur via electric current acceleration and companion electromagnetic field fluctuation. I have named this mechanism of solution chemistry the ebb effect. Phase-locking between neural structure and electric fields that are emergent from cellular EM field fluctuations, in addition to feedback loops within neural networks, are the probable driver of macroscopic oscillation and flow shapes in the brain. CEMI (conscious electromagnetic information) theory is a promising framework for explaining intentionality and the spectrum of arousal as EM field effects. Relatively low frequency electromagnetic radiation is emitted by the accelerating electric currents of neurons. It is hypothesized that this EM radiation superpositions with molecular structure as it spreads to comprise percepts, the hybrid wavelengths of which form subjective images while wavelength vibrations result in subjective feel. These superposition arrays are termed a coherence field, and in combination with the synchronizing influence of quantum entanglement and electromagnetic fluctuations may constitute much of awareness’ substance. If conclusively verified, coherence field theory should have significance ranging from the treatment of perceptual disorders such as anosognosia to advancing foundational constructs like atomic theory.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12147174 and 61835013)the National Key Research and Development Program of China(Grant Nos.2021YFA1400900,2021YFA0718300,and 2021YFA1400243).
文摘We study quantum synchronization under the nonequilibrium reservoirs.We consider a two-qubit XXZ chain coupled independently to their own reservoirs modeled by the collisional model.Two reservoir particles,initially prepared in a thermal state or a state with coherence,are correlated through a unitary transformation and afterward interact locally with the two quantum subsystems.We study the quantum effect of reservoir on synchronous dynamics of system.By preparing different reservoir initial states or manipulating the reservoir particles coupling and the temperature gradient,we find that quantum entanglement of reservoir is the key to control quantum synchronization of system qubits.
基金Project supported by the Natural Science Foundation of Shanxi Province of China (Grant No. 202203021221214)the National Natural Science Foundation of China (Grant Nos. 62122044, 62135008, 61925503, 11904218, 12004276, 12147215, and 11834010)+4 种基金the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province of China (Grant Nos. 2019L0092 and 2020L0029)the Key Project of the National Key Research and Development Program of China (Grant No. 2022YFA1404500)the Program for the Innovative Talents of Higher Education Institutions of Shanxi Province of Chinathe Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxithe Fund for Shanxi “1331 Project” Key Subjects Construction
文摘A quantum teleportation network involving multiple users is essential for future quantum internet.So far,controlled quantum teleportation has been demonstrated in a three-user network.However,versatile and controlled quantum teleportation network involving more users is in demand,which satisfies different combinations of users for practical requirements.Here we propose a highly versatile and controlled teleportation network that can switch among various combinations of different users.We use a single continuous-variable six-partite Greenberger-Horne-Zeilinger(GHZ)state to realize such a task by choosing the different measurement and feedback operations.The controlled teleportation network,which includes one sub-network,two sub-networks and three sub-networks,can be realized for different application of user combinations.Furthermore,the coherent feedback control(CFC)can manipulate and improve the teleportation performance.Our approach is flexible and scalable,and would provide a versatile platform for demonstrations of complex quantum communication and quantum computing protocols.
基金Project supported by the National Natural Science Foundation of China (Grant No 10875101)the Natural Science Foundation of Fujian Province, China (Grant No 2008J0028)
文摘A modified correlated spectroscopy (COSY) revamped with asymmetric Z-gradient echo detection sequence was designed to investigate the influence of diffusion hehaviour on intermolecular double-quantum coherence signal attenuation during the pre-acquisition period. Theoretical formulas were deduced and experimental measurements and simulations were performed. It is found that the diffusion behaviour of intermolecular double-quantum coherence in the pre-acquisition period may be different from that of conventional single-quantum coherence, depending on the relative orientation of diffusion weighting gradients to coherence selection gradients. When the orientation of the diffusion weighting gradients is parallel or anti-parallel to the orientation of the coherence selection gradients, the diffusion is modulated by the distant dipolar field. This study is helpful for understanding the signal properties in intermolecular double-quantum coherence magnetic resonance imaging.
基金Project supported by the National Natural Science Foundation of China(Grant Nos 20573084 and 10575085)the Nation Science Foundation of Fujian,China(Grant No A0610005)the Program for New Century Excellent Talents in University of Ministry of Education of China
文摘This paper analyses the heteronuclear Cosy Revamped by Asymmetric Z-gradient Echo Detection pulse sequence. General theoretical expressions of the pulse sequence with arbitrary flip angles were derived by using dipolar field treatment and signals originating from heteronuclear intermolecular single-quantum coherences (iSQCs) in highly-polarized two spin-1/2 systems were mainly discussed in order to find the optimal flip angles. The results show that signals from heteronuclear iSQCs decay slower than those from intermolecular double-quantum coherences or intermolecular zero-quantum coherences. Magical angle experiments validate that the signals are from heteronuclear iSQCs and insensitive to the imperfection of radio-frequency flip angles. All experimental observations are in excellent agreement with theoretical predictions. The quantum-mechanical treatment leads to similar predictions to the dipolar field treatment.
基金Project supported by the Natural Science Foundation of Hebei Province,China(Grant No.A2009000140)
文摘We present a theoretical study of quantum coherent effects in a A-three-level system with a strong bichromatic coupling field and a weak probe field. When one component of the strong bichromatic coupling field is resonant with a corresponding transition and the other is detuning with an integer fraction of the Rabi frequency of the resonant field, the absorption spectrum exhibits a series of symmetrical doublets. While two frequencies of the strong bichromatic coupling field are symmetrically detuned from the transition, the position and the relative intensity of the absorption peak are both affected by the coupling field intensity and detuning. An explanation of the spectrum is given in term of the dressed-state formalism.
基金Project supported by the Scientific Research Project of Hunan Provincial Education Department,China(Grant No.16C0949)the Hunan Provincial Innovation Foundation for Postgraduate,China(Grant No.CX2017B177)+1 种基金the National Natural Science Foundation of China(Grant No.11374096)the Doctoral Science Foundation of Hunan Normal University,China
文摘Quantum coherence and non-Markovianity of an atom in a dissipative cavity under weak measurement are investigated in this work. We find that: the quantum coherence obviously depends on the initial atomic state, the strength of the weak measurement and its reversal, the atom-cavity coupling constant and the non-Markovian effect. It is obvious that the weak measurement effect protects the coherence better. The quantum coherence is preserved more efficiently for larger atom- cavity coupling. The stronger the non-Markovian effect is, the more slowly the coherence reduces. The quantum coherence can be effectively protected by means of controlling these physical parameters.
基金Project supported by the Fundamental Research Funds for the Central University (Grant Nos.GK201002024 and GK201003003)the National Natural Science Foundation of China (Grant Nos.11104176 and 11104185)+2 种基金the Natural Science Foundation of Shaanxi Province,China (Grant No.2011JQ1008)the Special Fund of Shanghai Outstanding Young Teachers,China (Grant Nos.slg10054 and slg10023)the Innovation Program of Shanghai Municipal Education Commission,China (Grant No.11YZ118)
文摘Bistability behaviors in an optical ring cavity filled with a dense V-type four-level atomic medium are theoretically investigated. It is found that the optical bistability can appear in the negative refraction frequency band, while both the bistability and multi-stability can occur in the positive refraction frequency bands. Therefore, optical bistability can be realized from conventional material to negative index material due to quantum coherence in our scheme.
基金supported by the State Scholarship Fund organized by the China Scholarship Council(CSC).
文摘Energy transfer is ubiquitous in natural and artificial lightharvesting systems,and coherent energy transfer,a highly efficient energy transfer process,has been accepted to play a vital role in such systems.However,the energy oscillation of coherent energy transfer is exceedingly difficult to capture because of its evanescence due to the interaction with a thermal environment.Here a microscopic quantum model is used to study the time evolution of electrons triggered energy transfer between coherently coupled donoracceptor molecules in scanning tunneling microscope(STM).A series of topics in the plasmonic nanocavity(PNC)coupled donor-acceptor molecules system are discussed,including resonant and nonresonant coherent energy transfer,dephasing assisted energy transfer,PNC coupling strength dependent energy transfer,Fano resonance of coherently coupled donor-acceptor molecules,and polariton-mediated energy transfer.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11504106,11247308,and 11447167)the Fundamental Research Funds for the Central Universities of China(Grant Nos.2018MS049 and 2018MS057)
文摘We study three important measurements used to identify the quantum correlations between two quantum dots (QDs) mediated by a pair of Majorana fermions (MFs) in a superconducting quantum wire. We find that, in addition to the quantum discord, the robustness of coherence (ROC) can also be considered as a quantity to measure the quantum correlation for the special case where the quantum entanglement is vanishing. For comparison, we study the quantum correlation between two QDs mediated by other fermions, i.e., regular fermions and superconducting fermions. We find that, when the quantum entanglement is not vanishing, i.e., the concurrence is finite, the detailed difference between the concurrence and ROC can be considered as an important implication for the existence of MFs.
基金supported by the National Natural Science Foundation of China(Grant Nos.11421063,11534002,and 51776178)the National Key Basic Research Program of China(Grant Nos.2012CB922104 and 2014CB921403)
文摘Energy is often partitioned into heat and work by two independent paths corresponding to the change in the eigenenergies or the probability distributions of a quantum system. The discrepancies of the heat and work for various quantum thermodynamic processes have not been well characterized in literature. Here we show how the work in quantum machines is differentially related to the isochoric, isothermal, and adiabatic processes. We prove that the energy exchanges during the quantum isochoric and isothermal processes are simply depending on the change in the eigenenergies or the probability distributions. However, for a time-dependent system in a non-adiabatic quantum evolution, the transitions between the different quantum states representing the quantum coherence can affect the essential thermodynamic properties, and thus the general definitions of the heat and work should be clarified with respect to the microscopic generic time-dependent system. By integrating the coherence effects in the exactly-solvable dynamics of quantum-spin precession, the internal energy is rigorously transferred as the work in the thermodynamic adiabatic process. The present study demonstrates that the quantum adiabatic process is sufficient but not necessary for the thermodynamic adiabatic process.