In this paper, we establish the second-order differential equation system with the feedback controls for solving the problem of convex programming. Using Lagrange function and projection operator, the equivalent opera...In this paper, we establish the second-order differential equation system with the feedback controls for solving the problem of convex programming. Using Lagrange function and projection operator, the equivalent operator equations for the convex programming problems under the certain conditions are obtained. Then a second-order differential equation system with the feedback controls is constructed on the basis of operator equation. We prove that any accumulation point of the trajectory of the second-order differential equation system with the feedback controls is a solution to the convex programming problem. In the end, two examples using this differential equation system are solved. The numerical results are reported to verify the effectiveness of the second-order differential equation system with the feedback controls for solving the convex programming problem.展开更多
The traditional guidance law only guarantees the accuracy of attacking a target. However, the look angle and acceleration constraints are indispensable in applications. A new adaptive three-dimensional proportional na...The traditional guidance law only guarantees the accuracy of attacking a target. However, the look angle and acceleration constraints are indispensable in applications. A new adaptive three-dimensional proportional navigation(PN) guidance law is proposed based on convex optimization. Decomposition of the three-dimensional space is carried out to establish threedimensional kinematic engagements. The constraints and the performance index are disposed by using the convex optimization method. PN guidance gains can be obtained by solving the optimization problem. This solution is more rapid and programmatic than the traditional method and provides a foundation for future online guidance methods, which is of great value for engineering applications.展开更多
In this paper, the MMC-TDGL equation, a stochastic Cahn-Hilliard equation with a variable interfacial parameter, is solved numerically by using a convex splitting scheme which is second-order in time for the non-stoch...In this paper, the MMC-TDGL equation, a stochastic Cahn-Hilliard equation with a variable interfacial parameter, is solved numerically by using a convex splitting scheme which is second-order in time for the non-stochastic part in combination with the Crank- Nicolson and the Adams-Bashforth methods. For the non-stochastic case, the uncondi- tional energy stability is obtained in the sense that a modified energy is non-increasing. The scheme in the stochastic version is then obtained by adding the discretized stochastic term. Numerical experiments are carried out to verify the second-order convergence rate for the non-stochastic case~ and to show the long-time stochastic evolutions using larger time steps.展开更多
Line-commutated converter (LCC)-based high-voltage DC (HVDC) systems have been integrated with bulk AC power grids for interregional transmission of renewable power. The nonlinear LCC model brings additional nonconvex...Line-commutated converter (LCC)-based high-voltage DC (HVDC) systems have been integrated with bulk AC power grids for interregional transmission of renewable power. The nonlinear LCC model brings additional nonconvexity to optimal power flow (OPF) of hybrid AC-DC power grids. A convexification method for the LCC station model could address such nonconvexity but has rarely been discussed. We devise an equivalent reformulation for classical LCC station models that facilitates second-order cone convex relaxation for the OPF of LCC-based AC-DC power grids. We also propose sufficient conditions for exactness of convex relaxation with its proof. Equivalence of the proposed LCC station models and properties, exactness, and effectiveness of convex relaxation are verified using four numerical simulations. Simulation results demonstrate a globally optimal solution of the original OPF can be efficiently obtained from relaxed model.展开更多
An improved approach is presented in this paper to implement highly constrained cooperative guidance to attack a stationary target.The problem with time-varying Proportional Navigation(PN)gain is first formulated as a...An improved approach is presented in this paper to implement highly constrained cooperative guidance to attack a stationary target.The problem with time-varying Proportional Navigation(PN)gain is first formulated as a nonlinear optimal control problem,which is difficult to solve due to the existence of nonlinear kinematics and nonconvex constraints.After convexification treatments and discretization,the solution to the original problem can be approximately obtained by solving a sequence of Second-Order Cone Programming(SOCP)problems,which can be readily solved by state-of-the-art Interior-Point Methods(IPMs).To mitigate the sensibility of the algorithm on the user-provided initial profile,a Two-Stage Sequential Convex Programming(TSSCP)method is presented in detail.Furthermore,numerical simulations under different mission scenarios are conducted to show the superiority of the proposed method in solving the cooperative guidance problem.The research indicated that the TSSCP method is more tractable and reliable than the traditional methods and has great potential for real-time processing and on-board implementation.展开更多
This paper proposes second-order distributed algorithms over multi-agent networks to solve the convex optimization problem by utilizing the gradient tracking strategy, with convergence acceleration being achieved. Bot...This paper proposes second-order distributed algorithms over multi-agent networks to solve the convex optimization problem by utilizing the gradient tracking strategy, with convergence acceleration being achieved. Both the undirected and unbalanced directed graphs are considered, extending existing algorithms that primarily focus on undirected or balanced directed graphs. Our algorithms also have the advantage of abandoning the diminishing step-size strategy so that slow convergence can be avoided. Furthermore, the exact convergence to the optimal solution can be realized even under the constant step size adopted in this paper. Finally, two numerical examples are presented to show the convergence performance of our algorithms.展开更多
文摘In this paper, we establish the second-order differential equation system with the feedback controls for solving the problem of convex programming. Using Lagrange function and projection operator, the equivalent operator equations for the convex programming problems under the certain conditions are obtained. Then a second-order differential equation system with the feedback controls is constructed on the basis of operator equation. We prove that any accumulation point of the trajectory of the second-order differential equation system with the feedback controls is a solution to the convex programming problem. In the end, two examples using this differential equation system are solved. The numerical results are reported to verify the effectiveness of the second-order differential equation system with the feedback controls for solving the convex programming problem.
基金supported by the National Natural Science Foundation of China(61803357)。
文摘The traditional guidance law only guarantees the accuracy of attacking a target. However, the look angle and acceleration constraints are indispensable in applications. A new adaptive three-dimensional proportional navigation(PN) guidance law is proposed based on convex optimization. Decomposition of the three-dimensional space is carried out to establish threedimensional kinematic engagements. The constraints and the performance index are disposed by using the convex optimization method. PN guidance gains can be obtained by solving the optimization problem. This solution is more rapid and programmatic than the traditional method and provides a foundation for future online guidance methods, which is of great value for engineering applications.
文摘In this paper, the MMC-TDGL equation, a stochastic Cahn-Hilliard equation with a variable interfacial parameter, is solved numerically by using a convex splitting scheme which is second-order in time for the non-stochastic part in combination with the Crank- Nicolson and the Adams-Bashforth methods. For the non-stochastic case, the uncondi- tional energy stability is obtained in the sense that a modified energy is non-increasing. The scheme in the stochastic version is then obtained by adding the discretized stochastic term. Numerical experiments are carried out to verify the second-order convergence rate for the non-stochastic case~ and to show the long-time stochastic evolutions using larger time steps.
基金supported by the National Natural Science Foundation of China under Grant 52177086the Fundamental Research Funds for the Central Universities under Grant 2023ZYGXZR063the Science and Technology Program of Guizhou Power Grid Coorperation under Grant GZKJXM20222386.
文摘Line-commutated converter (LCC)-based high-voltage DC (HVDC) systems have been integrated with bulk AC power grids for interregional transmission of renewable power. The nonlinear LCC model brings additional nonconvexity to optimal power flow (OPF) of hybrid AC-DC power grids. A convexification method for the LCC station model could address such nonconvexity but has rarely been discussed. We devise an equivalent reformulation for classical LCC station models that facilitates second-order cone convex relaxation for the OPF of LCC-based AC-DC power grids. We also propose sufficient conditions for exactness of convex relaxation with its proof. Equivalence of the proposed LCC station models and properties, exactness, and effectiveness of convex relaxation are verified using four numerical simulations. Simulation results demonstrate a globally optimal solution of the original OPF can be efficiently obtained from relaxed model.
基金supported by the Joint Foundation of the Ministry of Education of China(No.6141A02022340).
文摘An improved approach is presented in this paper to implement highly constrained cooperative guidance to attack a stationary target.The problem with time-varying Proportional Navigation(PN)gain is first formulated as a nonlinear optimal control problem,which is difficult to solve due to the existence of nonlinear kinematics and nonconvex constraints.After convexification treatments and discretization,the solution to the original problem can be approximately obtained by solving a sequence of Second-Order Cone Programming(SOCP)problems,which can be readily solved by state-of-the-art Interior-Point Methods(IPMs).To mitigate the sensibility of the algorithm on the user-provided initial profile,a Two-Stage Sequential Convex Programming(TSSCP)method is presented in detail.Furthermore,numerical simulations under different mission scenarios are conducted to show the superiority of the proposed method in solving the cooperative guidance problem.The research indicated that the TSSCP method is more tractable and reliable than the traditional methods and has great potential for real-time processing and on-board implementation.
基金supported by National Nature Science Foundation of China (Nos. 61663026, 62066026, 61963028 and 61866023)Jiangxi NSF (No. 20192BAB 207025)。
文摘This paper proposes second-order distributed algorithms over multi-agent networks to solve the convex optimization problem by utilizing the gradient tracking strategy, with convergence acceleration being achieved. Both the undirected and unbalanced directed graphs are considered, extending existing algorithms that primarily focus on undirected or balanced directed graphs. Our algorithms also have the advantage of abandoning the diminishing step-size strategy so that slow convergence can be avoided. Furthermore, the exact convergence to the optimal solution can be realized even under the constant step size adopted in this paper. Finally, two numerical examples are presented to show the convergence performance of our algorithms.