The chemistry version of the Weather Re- search and Forecasting model (WRF/Chem) was coupled with the anthropogenic emission inventory of David Streets to investigate the impacts of secondary aerosols on a persisten...The chemistry version of the Weather Re- search and Forecasting model (WRF/Chem) was coupled with the anthropogenic emission inventory of David Streets to investigate the impacts of secondary aerosols on a persistent fog event from 25 to 26 October 2007, in Northem China. The spatial distribution of the simulated fog is consistent with satellite observations, and the time-height distributions of the simulated boundary layer where the fog formed are also in good agreement with these observations. The sensitivity studies show that the secondary aerosols of SO4, NO3, and NH4 formed from gaseous precursors of SO2, NOx, and NH3 had substantial impacts on the formation processes and microphysical structure of the fog event. The decrease of the secondary aerosols obviously reduced the liquid water path and column droplet number concentration of the fog below the 1-km layer, and the corresponding area-averaged liquid water path and droplet number concentration of the fog decreased by 43% and 79%, respectively. The concentra- tions of NOx and NO3 were found to be extremely high in this case. The concentration of interstitial aerosol NO3 was much higher than the SO4 and NH4, but the concentration of SO4 was highest in the cloud-borne aerosols. The average activation ratios for SO4, NO3, and NH4 were 34%, 31%, and 30%, respectively, and the maximum ra- tios reached 62%, 86%, and 55% during the fog episode.展开更多
Quantifying differences in secondary organic aerosols(SOAs)between the preindustrial period and the present day is crucial to assess climate forcing and environmental effects resulting from anthropogenic activities.Th...Quantifying differences in secondary organic aerosols(SOAs)between the preindustrial period and the present day is crucial to assess climate forcing and environmental effects resulting from anthropogenic activities.The lack of vegetation information for the preindustrial period and the uncertainties in describing SOA formation are two leading factors preventing simulation of SOA.This study calculated the online emissions of biogenic volatile organic compounds(VOCs)in the Aerosol and Atmospheric Chemistry Model of the Institute of Atmospheric Physics(IAP-AACM)by coupling the Model of Emissions of Gases and Aerosols from Nature(MEGAN),where the input vegetation parameters were simulated by the IAP Dynamic Global Vegetation Model(IAP-DGVM).The volatility basis set(VBS)approach was adopted to simulate SOA formation from the nontraditional pathways,i.e.,the oxidation of intermediate VOCs and aging of primary organic aerosol.Although biogenic SOAs(BSOAs)were dominant in SOAs globally in the preindustrial period,the contribution of nontraditional anthropogenic SOAs(ASOAs)to the total SOAs was up to 35.7%.In the present day,the contribution of ASOAs was 2.8 times larger than that in the preindustrial period.The contribution of nontraditional sources of SOAs to SOA was as high as 53.1%.The influence of increased anthropogenic emissions in the present day on BSOA concentrations was greater than that of increased biogenic emission changes.The response of BSOA concentrations to anthropogenic emission changes in the present day was more sensitive than that in the preindustrial period.The nontraditional sources and the atmospheric oxidation capability greatly affect the global SOA change.展开更多
In order to investigate the atmospheric oxidation processes and the formation of secondary organic aerosol (SOA), an indoor environmental reaction smog chamber are constructed and characterized. The system consists ...In order to investigate the atmospheric oxidation processes and the formation of secondary organic aerosol (SOA), an indoor environmental reaction smog chamber are constructed and characterized. The system consists of the collapsible ~830 L FEP Teflon film main reactor, in which the atmospheric chemical reactions take place and the formation of SOA occurs under the simulated atmospheric conditions, and the diverse on-line gas- and particle-phase instrumentation, such as the proton transfer reaction mass spectrometer, the synchrotron radiation photoionization mass spectrometer, the aerosol laser time-of-flight mass spectrometer, and other traditional commercial instruments. The initial characterization experiments are described, concerning the temperature and ultraviolet light intensity, the reactivity of the pure air, the wall loss rates of gaseous compounds and particulate matter. And the initial evaluation experiments for SOA yields from the ozonolysis of α-pinene and for mass spectra of the products resulting from the photooxidation of OH initiated isoprene are also presented, which indicate the applicability of this facility on the studies of gas-phase chemical mechanisms as well as the formation of SOA expected in the atmosphere.展开更多
Severe haze pollution occurs frequently in the winter over the Beijing-Tianjin-Hebei(BTH)region(China),exerting profound impacts on air quality,visibility,and human health.The Chinese Government has taken strict mitig...Severe haze pollution occurs frequently in the winter over the Beijing-Tianjin-Hebei(BTH)region(China),exerting profound impacts on air quality,visibility,and human health.The Chinese Government has taken strict mitigation actions since 2013 and has achieved a significant reduction in the annual mean PM2.5 concentration over this region.However,the level of secondary aerosols during heavy haze episodes showed little decrease during this period.During heavy haze episodes,the concentrations of secondary aerosol components,including sulfate,nitrate and secondary organics,in aerosol particles increase sharply,acting as the main contributors to aerosol pollution.To achieve effective control of particle pollution in the BTH region,the precise and complete secondary aerosol formation mechanisms have been investigated,and advances have been made about the mechanisms of gas phase reaction,nucleation and heterogeneous reactions in forming secondary aerosols.This paper reviews the research progress in aerosol chemistry during haze pollution episodes in the BTH region,lays out the challenges in haze formation studies,and provides implications and directions for future research.展开更多
Air pollution is the world's largest single environmental hazard that causes more than a few million premature deaths in 2012(World Health Organization,2014),particularly in developing countries with rapid industri...Air pollution is the world's largest single environmental hazard that causes more than a few million premature deaths in 2012(World Health Organization,2014),particularly in developing countries with rapid industrialization and urbanization.Rapid economic growth of China in the last three decades has resulted in serious air pollution problems on both local and regional scales.展开更多
To investigate the sensitivity of secondary aerosol formation and oxidation capacity to NOx in homogeneous and heterogeneous reactions, a series of irradiated toluene/NOx/air and ?-pinene/NOx/air experiments were cond...To investigate the sensitivity of secondary aerosol formation and oxidation capacity to NOx in homogeneous and heterogeneous reactions, a series of irradiated toluene/NOx/air and ?-pinene/NOx/air experiments were conducted in smog chambers in the absence or presence of Al2O3 seed particles. Various concentrations of NOx and volatile organic compounds(VOCs) were designed to simulate secondary aerosol formation under different scenarios for NOx. Under "VOC-limited" conditions, the increasing NOx concentration suppressed secondary aerosol formation, while the increasing toluene concentration not only contributed to the increase in secondary aerosol formation, but also led to the elevated oxidation degree for the organic aerosol. Sulfate formation was suppressed with the increasing NOx due to a decreased oxidation capacity of the photooxidation system. Secondary organic aerosol(SOA) formation also decreased with the presence of high concentration of NOx, because organo-peroxy radicals(RO2) react with NOx instead of with peroxy radicals(RO2 or HO2), resulting in the formation of volatile organic products. The increasing concentration of NOx enhanced the formation of sulfate, nitrate and SOA under "NOx-limited" conditions, in which the heterogeneous reactions played an important role. In the presence of Al2O3 seed particles, a synergetic promoting effect of mineral dust and NOx on secondary aerosol formation in heterogeneous reactions was observed in the photooxidation. This synergetic effect strengthened the positive relationship between NOx and secondary aerosol formation under "NOx-limited" conditions but weakened or even overturned the negative relationship between NOx and secondary aerosol formation under "VOC-limited" conditions. Sensitivity of secondary aerosol formation to NOx seemed different in homogeneous and heterogeneous reactions, and should be both taken into account in the sensitivity study. The sensitivity of secondary aerosol formation to NOx was further investigated under "winter-like" and NH3-rich conditions. No obvious difference for the sensitivity of secondary aerosol formation except nitrate to NOx was observed.展开更多
Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds(VOCs). However,little information on secondary aeroso...Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds(VOCs). However,little information on secondary aerosol formation from exhaust for Chinese vehicles and fuel conditions is available. In this study, chamber experiments were conducted to quantify the potential of secondary aerosol formation from the exhaust of a port fuel injection gasoline engine. The engine and fuel used are common in the Chinese market, and the fuel satisfies the China V gasoline fuel standard. Substantial secondary aerosol formation was observed during a 4–5 hr simulation, which was estimated to represent more than 10 days of equivalent atmospheric photo-oxidation in Beijing. As a consequence, the extreme case secondary organic aerosol(SOA) production was 426 ± 85 mg/kg-fuel, with high levels of precursors and OH exposure. The low hygroscopicity of the aerosols formed inside the chamber suggests that SOA was the dominant chemical composition. Fourteen percent of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatile organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reductions of emissions of aerosol precursor gases from vehicles are essential to mediate pollution in China.展开更多
In a smog chamber, the photooxidation of toluene was initiated by hydroxyl radical (OH.) under different experimental conditions. The size distribution of secondary organic aerosol(SOA) particles from the above re...In a smog chamber, the photooxidation of toluene was initiated by hydroxyl radical (OH.) under different experimental conditions. The size distribution of secondary organic aerosol(SOA) particles from the above reaction was measured using aerodynamic particle sizer spectrometer. It was found from our experimental results that the number of SOA particles increased with increasing the concentration of toluene. As the reaction time prolonged, the sum of SOA particles was also increased. After a reaction time of 130 min, the concentration of secondary organic aerosol particles would be kept constant at 2300 particles/cm^3. Increasing illumination power of blacklamps could significantly induce a higher concentration of secondary organic aerosol particle. The density of SOA particles would also be increased with increasing concentration of CH30NO, however, it would be decreased as soon as the concentration of CH30NO was larger than 225.2 ppm. Nitrogen oxide with initial concentration higher than 30. 1 ppm was also found to have little effect on the formation of secondary organic aerosol.展开更多
Hydroxyl radical (.OH)-initiated photooxidation reaction of toluene was carried out in a self-made smog chamber. Four individual seed aerosols such as ammonium sulfate, ammonium nitrate, sodium silicate and calcium ...Hydroxyl radical (.OH)-initiated photooxidation reaction of toluene was carried out in a self-made smog chamber. Four individual seed aerosols such as ammonium sulfate, ammonium nitrate, sodium silicate and calcium chloride, were introduced into the chamber to assess their influence on the growth of secondary organic aerosols (SOA). It was found that the low concentration of seed aerosols might lead to high concentration of SOA particles. Seed aerosols would promote rates of SOA formation at the start of the reaction and inhibit its formation rate with prolonging the reaction time. In the case of ca. 9000 pt/cm^3 seed aerosol load, the addition of sodium silicate induced a same effect on the SOA formation as ammonium nitrate. The influence of the four individual seed aerosols on the generation of SOA decreased in the order of calcium chloride〉sodium silicate and ammonium nitrate〉ammonium sulfate.展开更多
This paper explores the role of the secondary inorganic aerosol (SIA) species ammonium,NH4+,nitrate,NO3-,and sulfate,SO24-,during haze and fog events using hourly mass concentrations of PM2.5 measured at a suburban...This paper explores the role of the secondary inorganic aerosol (SIA) species ammonium,NH4+,nitrate,NO3-,and sulfate,SO24-,during haze and fog events using hourly mass concentrations of PM2.5 measured at a suburban site in Hangzhou,China.A total of 546 samples were collected between 1 April and 8 May 2012.The samples were analyzed and classified as clear,haze or fog depending on visibility and relative humidity (RH).The contribution of SIA species to PM2.5 mass increased to ~50% during haze and fog.The mass contribution of nitrate to PM2.5 increased from 11% during clear to 20% during haze episodes.Nitrate mass exceeded sulfate mass during haze,while near equal concentrations were observed during fog episodes.The role of RH on the correlation between concentrations of SIA and visibility was examined,with optimal correlation at 60%-70% RH.The total acidity during clear,haze and fog periods was 42.38,48.38 and 45.51 nmol m-3,respectively,indicating that sulfate,nitrate and chloride were not neutralized by ammonium during any period.The nitrate to sulfate molar ratio,as a function of the ammonium to sulfate molar ratio,indicated that nitrate formation during fog started at a higher ammonium to sulfate molar ratio compared to clear and haze periods.During haze and fog,the nitrate oxidation ratio increased by a factor of 1.6-1.7,while the sulfur oxidation ratio increased by a factor of 1.2-1.5,indicating that both gaseous NO2 and SO2 were involved in the reduced visibility.展开更多
Secondary organic aerosol (SOA) formation from hydroxyl radical (OH.) initiated photooxidation of α-pinene was investigated in a home-made smog chamber. The size distribution of SOA particles was measured using a...Secondary organic aerosol (SOA) formation from hydroxyl radical (OH.) initiated photooxidation of α-pinene was investigated in a home-made smog chamber. The size distribution of SOA particles was measured using aerodynamic particle sizer spectrometer. The effects of illumination intensity and light application time on SOA formation for α-pinene were evaluated. Experimental results show that the concentration of SOA particles increased significantly with an increasing of illumination intensity, and the light application time, the concentration, and the size of SOA particles were also increased. In addition, the factors influencing the formation of SOA were discussed. In addition, this article compared the effect of α-pinene with that of toluene, and discussed the contribution of α-pinene to SOA formation.展开更多
Ammonia(NH3) plays vital roles in new particle formation and atmospheric chemistry. Although previous studies have revealed that it also influences the formation of secondary organic aerosols(SOA) from ozonolysis of b...Ammonia(NH3) plays vital roles in new particle formation and atmospheric chemistry. Although previous studies have revealed that it also influences the formation of secondary organic aerosols(SOA) from ozonolysis of biogenic and anthropogenic volatile organic compounds(VOCs), the influence of NH3 on particle formation from complex mixtures such as vehicle exhausts is still poorly understood. Here we directly introduced gasoline vehicles exhausts(GVE) into a smog chamber with NH3 absorbed by denuders to examine the role of NH3 in particle formation from GVE. We found that removing NH3 from GVE would greatly suppress the formation and growth of particles. Adding NH3 into the reactor after 3 h photo-oxidation of GVE, the particle number concentration and mass concentrations jumped explosively to much higher levels, indicating that the numbers and mass of particles might be enhanced when aged vehicle exhausts are transported to rural areas and mixed with NH3-rich plumes. We also found that the presence of NH3 had no significant influence on SOA formation from GVE. Very similar oxygen to carbon(O:C) and hydrogen to carbon(H:C) ratios resolved by aerosol mass spectrometer with and without NH3 indicated that the presence of NH3 also had no impact on the average carbon oxidation state of SOA from GVE.展开更多
A field experiment from 18 August to 8 September 2006 in Beijing, China, was carried out. A hazy day was defined as visibility 〈 10 km and RH(relative humidity) 〈 90%. Four haze episodes, which accounted for ~ 60...A field experiment from 18 August to 8 September 2006 in Beijing, China, was carried out. A hazy day was defined as visibility 〈 10 km and RH(relative humidity) 〈 90%. Four haze episodes, which accounted for ~ 60% of the time during the whole campaign, were characterized by increases of SNA(sulfate, nitrate, and ammonium) and SOA(secondary organic aerosol) concentrations. The average values with standard deviation of SO2-+4, NO-3, NH4 and SOA were 49.8(± 31.6), 31.4(±22.3), 25.8(±16.6) and 8.9(±4.1) μg/m3, respectively, during the haze episodes, which were 4.3, 3.4, 4.1, and 1.7 times those in the non-haze days. The SO2-4,NO-3, NH+4, and SOA accounted for 15.8%, 8.8%, 7.3%, and 6.0% of the total mass concentration of PM10 during the non-haze days. The respective contributions of SNA species to PM10 rose to about27.2%, 15.9%, and 13.9% during the haze days, while the contributions of SOA maintained the same level with a slight decrease to about 4.9%. The observed mass concentrations of SNA and SOA increased with the increase of PM10 mass concentration, however, the rate of increase of SNA was much faster than that of the SOA. The SOR(sulfur oxidation ratio) and NOR(nitrogen oxidation ratio) increased from non-haze days to hazy days, and increased with the increase of RH. High concentrations of aerosols and water vapor favored the conversion of SO2 to SO2-4and NO2 to NO-3, which accelerated the accumulation of the aerosols and resulted in the formation of haze in Beijing.展开更多
Anthropogenic emissions alter biogenic secondary organic aerosol(SOA)formation from naturally emitted volatileorganic compounds(BVOCs).We review the major laboratory and field findings with regard to effects of anthro...Anthropogenic emissions alter biogenic secondary organic aerosol(SOA)formation from naturally emitted volatileorganic compounds(BVOCs).We review the major laboratory and field findings with regard to effects of anthropogenicpollutants(NO_(x),anthropogenic aerosols,SO_(2),NH_(3))on biogenic SOA formation.NO_(x) participate in BVOC oxidationthrough changing the radical chemistry and oxidation capacity,leading to a complex SOA composition and yield sensitivitytowards NO_(x) level for different or even specific hydrocarbon precursors.Anthropogenic aerosols act as an importantintermedium for gas-particle partitioning and particle-phase reactions,processes of which are influenced by the particlephase state,acidity,water content and thus associated with biogenic SOA mass accumulation.SO_(2)modifies biogenic SOAformation mainly through sulfuric acid formation and accompanies new particle formation and acid-catalyzedheterogeneous reactions.Some new SO_(2)-involved mechanisms for organosulfate formation have also been proposed.NH_(3)/amines,as the most prevalent base species in the atmosphere,influence biogenic SOA composition and modify theoptical properties of SOA.The response of SOA formation behavior to these anthropogenic pollutants varies amongdifferent BVOCs precursors.Investigations on anthropogenic-biogenic interactions in some areas of China that aresimultaneously influenced by anthropogenic and biogenic emissions are summarized.Based on this review,somerecommendations are made for a more accurate assessment of controllable biogenic SOA formation and its contribution tothe total SOA budget.This study also highlights the importance of controlling anthropogenic pollutant emissions witheffective pollutant mitigation policies to reduce regional and global biogenic SOA formation.展开更多
Photochemical aging of volatile organic compounds(VOCs)in the atmosphere is an important source of secondary organic aerosol(SOA).To evaluate the formation potential of SOA at an urban site in Lyon(France),an outdoor ...Photochemical aging of volatile organic compounds(VOCs)in the atmosphere is an important source of secondary organic aerosol(SOA).To evaluate the formation potential of SOA at an urban site in Lyon(France),an outdoor experiment using a Potential Aerosol Mass(PAM)oxidation flow reactor(OFR)was conducted throughout entire days during JanuaryFebruary 2017.Diurnal variation of SOA formations and their correlation with OH radical exposure(OHexp),ambient pollutants(VOCs and particulate matters,PM),Relative Humidity(RH),and temperature were explored in this study.Ambient urban air was exposed to high concentration of OH radicals with OHexp in range of(0.2-1.2)×10^12 molecule/(cm^3·sec),corresponding to several days to weeks of equivalent atmospheric photochemical aging.The results informed that urban air at Lyon has high potency to contribute to SOA,and these SOA productions were favored from OH radical photochemical oxidation rather than via ozonolysis.Maximum SOA formation(36μg/m^3)was obtained at OHexp of about 7.4×10^11 molecule/(cm^3·sec),equivalent to approximately 5 days of atmospheric oxidation.The correlation between SOA formation and ambient environment conditions(RH&temperature,VOCs and PM)was observed.It was the first time to estimate SOA formation potential from ambient air over a long period in urban environment of Lyon.展开更多
Methylglyoxal(CH3COCHO,MG),which is one of the most abundant α-dicarbonyl compounds in the atmosphere,has been reported as a major source of secondary organic aerosol(SOA).In this work,the reaction of MG with hydroxy...Methylglyoxal(CH3COCHO,MG),which is one of the most abundant α-dicarbonyl compounds in the atmosphere,has been reported as a major source of secondary organic aerosol(SOA).In this work,the reaction of MG with hydroxyl radicals was studied in a 500 L smog chamber at(293±3)K,atmospheric pressure,(18±2)%relative humidity,and under different NOx and SO2.Particle size distribution was measured by using a scanning mobility particle sizer(SMPS)and the results showed that the addition of SO2 can promote SOA formation,while different NOx concentrations have different influences on SOA production.High NOx suppressed the SOA formation,whereas the particle mass concentration,particle number concentration and particle geometric mean diameter increased with the increasing NOx concentration at low NOx concentration in the presence of SO2.In addition,the products of the OH-initiated oxidation of MG and the functional groups of the particle phase in the MG/OH/SO2 and MG/OH/NOx/SO2 reaction systems were detected by gas chromatography mass spectrometry(GC-MS)and attenuated total reflection fourier transformed infrared spectroscopy(ATR-FTIR)analysis.Two products,glyoxylic acid and oxalic acid,were detected by GC-MS.The mechanism of the reaction of MG and OH radicals that follows two main pathways,H atom abstraction and hydration,is proposed.Evidence is provided for the formation of organic nitrates and organic sulfate in particle phase from IR spectra.Incorporation of NOx and SO2 influence suggested that SOA formation from anthropogenic hydrocarbons may be more efficient in polluted environment.展开更多
Photooxidation of isoprene leads to the formation of secondary organic aerosol (SOA). In this study, the chemical composition of SOA formed from OH-initiated photooxidation of isoprene has been investigated with gas...Photooxidation of isoprene leads to the formation of secondary organic aerosol (SOA). In this study, the chemical composition of SOA formed from OH-initiated photooxidation of isoprene has been investigated with gas chromatography/mass spectrometry (GC/MS) and a home-made aerosol time-of-fiight mass spectrometer. Sampling particles generated in a home-made smog chamber. The size distribution of SOA particles was detected by a TSI 3321 aerodynamic particle size spectrometer in real time. Results showed that SOA created by isoprene photooxidation was predominantly in the form of fine particles, which have diameters less than 2.5 μm. The obtained mass spectra of individual particles show that products of the OH-initiated oxidation of isoprene contain methyl vinyl ketone, methacrolein, formaldehyde, and some other hydroxycarbonyls. The possible reaction mechanisms leading to these products were also discussed.展开更多
In this study,online water-soluble inorganic ions were detected to deduce the formation mechanism of secondary inorganic aerosol in Xianyang,China during wintertime.The dominant inorganic ions of sulfate(SO_(4)^(2-)),...In this study,online water-soluble inorganic ions were detected to deduce the formation mechanism of secondary inorganic aerosol in Xianyang,China during wintertime.The dominant inorganic ions of sulfate(SO_(4)^(2-)),nitrate(NO_(3)^(-)),and ammonium(NH_(4)^(+))(the sum of those is abbreviated as SNA)accounted for 17%,21%,and 12% of PM_(2.5)mass,respectively.While the air quality deteriorated from excellent to poor grades,the precursor gas sulfur dioxide(SO_(2))of SO_(4)^(2-)increased and then decreased with a fluctuation,while nitrogen dioxide(NO_(2))and ammonia(NH_(3)),precursors of NO_(3)^(-)and NH_(4)^(+),and SNA show increasing trends.Meteorological factors including boundary layer height(BLH),temperature,and wind speed also show decline trends,except relative humidity(RH).Meanwhile,the secondary conversion ratio shows a remarkable increasing trend,indicating that there was a strong secondary transformation.From the perspective of chemical mechanisms,RH is positively correlated with sulfur oxidation ratios(SOR),nitrogen oxidation ratios(NOR),and ammonia conversion ratios,representing that the increase of humidity could promote the generation of SNA.Notably,SOR and NOR were also positively related to the ammonia.On the one hand,the low wind speed and BLH led to the accumulation of pollutants.On the other hand,the increases of RH and ammonia promoted more formations of SNA and PM_(2.5).The results advance our identification of the contributors to the haze episodes and assist to establish more efficient emission controls in Xianyang,in addition to other cities with similar emission and geographical characteristics.展开更多
Elucidating the effects of anthropogenic pollutants on the photooxidation of biogenic volatile organic compounds is crucial to understanding the fundamental mechanisms of secondary organic aerosol(SOA)formation.Here,t...Elucidating the effects of anthropogenic pollutants on the photooxidation of biogenic volatile organic compounds is crucial to understanding the fundamental mechanisms of secondary organic aerosol(SOA)formation.Here,the impacts of NO_(2)and SO_(2)on SOA formation from the photooxidation of a representative monoterpene,β-pinene,were investigated by a number of laboratory studies.The results indicated NO_(2)enhanced the SOA mass concentrations and particle number concentrations under both low and highβ-pinene conditions.This could be rationalized that the increased O_(3)concentrations upon the NO_(x)photolysis was helpful for the generation of more amounts of O_(3)-oxidized products,which accelerated the SOA nucleation and growth.Combing with NO_(2),the promotion of the SOA yield by SO_(2)was mainly reflected in the increase of mass concentration,which might be due to the elimination of the newly formed particles by the initially formed particles.The observed low oxidation degree of SOA might be attributed to the fast growth of SOA,resulting in the uptake of less oxygenated gas-phase species onto the particle phase.The present findings have important implications for SOA formation affected by anthropogenic–biogenic interactions in the ambient atmosphere.展开更多
Unsaturated ketones are typical oxygenated volatile organic compounds(OVOCs)with high reactivity,and are important precursors in air pollution.The sources of OVOCs are complex and include direct emissions and secondar...Unsaturated ketones are typical oxygenated volatile organic compounds(OVOCs)with high reactivity,and are important precursors in air pollution.The sources of OVOCs are complex and include direct emissions and secondary oxidation formation of VOCs in the atmosphere.2-Cyclohexen-1-one is a widespread substance,and is derived from the industrial catalytic oxidation of cyclohexene.In this paper,we investigated the rate constants of the chemical reactions of 2-cyclohexen-1-one with NO_(3) radicals,which is(7.25±0.29)×10^(-15) cm^(3)·molecule^(-1)·s^(-1) at 298 K and under 1 atm(1 atm=101325Pa).It supplemented the kinetics of NO_(3) radicals database,and revealed its effects in the nighttime atmosphere.In addition,the reaction products of 2-cyclohexen-1-one with NO_(3) radicals were detected by Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS),which revealed a series of nitrate esters in the composition of the secondary organic aerosol(SOA),which may reduce atmospheric visibility.Finally,the possible pathways for the generation of the products were developed.展开更多
基金supported by the National Meteorology Public Welfare Industry Research Project(GYHY200806001)the National Science and Technology Support Program (2006BAC12B03)
文摘The chemistry version of the Weather Re- search and Forecasting model (WRF/Chem) was coupled with the anthropogenic emission inventory of David Streets to investigate the impacts of secondary aerosols on a persistent fog event from 25 to 26 October 2007, in Northem China. The spatial distribution of the simulated fog is consistent with satellite observations, and the time-height distributions of the simulated boundary layer where the fog formed are also in good agreement with these observations. The sensitivity studies show that the secondary aerosols of SO4, NO3, and NH4 formed from gaseous precursors of SO2, NOx, and NH3 had substantial impacts on the formation processes and microphysical structure of the fog event. The decrease of the secondary aerosols obviously reduced the liquid water path and column droplet number concentration of the fog below the 1-km layer, and the corresponding area-averaged liquid water path and droplet number concentration of the fog decreased by 43% and 79%, respectively. The concentra- tions of NOx and NO3 were found to be extremely high in this case. The concentration of interstitial aerosol NO3 was much higher than the SO4 and NH4, but the concentration of SO4 was highest in the cloud-borne aerosols. The average activation ratios for SO4, NO3, and NH4 were 34%, 31%, and 30%, respectively, and the maximum ra- tios reached 62%, 86%, and 55% during the fog episode.
基金supported by the National Key R&D Program of China(Grant No.2020YFA0607801)the National Natural Science Foundation of China(Grant Nos.42007199 and 42377105)the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”.
文摘Quantifying differences in secondary organic aerosols(SOAs)between the preindustrial period and the present day is crucial to assess climate forcing and environmental effects resulting from anthropogenic activities.The lack of vegetation information for the preindustrial period and the uncertainties in describing SOA formation are two leading factors preventing simulation of SOA.This study calculated the online emissions of biogenic volatile organic compounds(VOCs)in the Aerosol and Atmospheric Chemistry Model of the Institute of Atmospheric Physics(IAP-AACM)by coupling the Model of Emissions of Gases and Aerosols from Nature(MEGAN),where the input vegetation parameters were simulated by the IAP Dynamic Global Vegetation Model(IAP-DGVM).The volatility basis set(VBS)approach was adopted to simulate SOA formation from the nontraditional pathways,i.e.,the oxidation of intermediate VOCs and aging of primary organic aerosol.Although biogenic SOAs(BSOAs)were dominant in SOAs globally in the preindustrial period,the contribution of nontraditional anthropogenic SOAs(ASOAs)to the total SOAs was up to 35.7%.In the present day,the contribution of ASOAs was 2.8 times larger than that in the preindustrial period.The contribution of nontraditional sources of SOAs to SOA was as high as 53.1%.The influence of increased anthropogenic emissions in the present day on BSOA concentrations was greater than that of increased biogenic emission changes.The response of BSOA concentrations to anthropogenic emission changes in the present day was more sensitive than that in the preindustrial period.The nontraditional sources and the atmospheric oxidation capability greatly affect the global SOA change.
基金This work was supported by the Natural Science Foundation of Anhui Province, China (No.1208085MD59), the National Natural Science Foundation of China (No.U1232209, No.41175121, and No.21307137), the Presidential Foundation of Hefei Institutes of Physical Science, Chinese Academy of Sciences, China (No.YZJJ201302), and the Knowledge Innovation Foundation of the Chinese Academy of Sciences (No.KJCX2-YW-N24).
文摘In order to investigate the atmospheric oxidation processes and the formation of secondary organic aerosol (SOA), an indoor environmental reaction smog chamber are constructed and characterized. The system consists of the collapsible ~830 L FEP Teflon film main reactor, in which the atmospheric chemical reactions take place and the formation of SOA occurs under the simulated atmospheric conditions, and the diverse on-line gas- and particle-phase instrumentation, such as the proton transfer reaction mass spectrometer, the synchrotron radiation photoionization mass spectrometer, the aerosol laser time-of-flight mass spectrometer, and other traditional commercial instruments. The initial characterization experiments are described, concerning the temperature and ultraviolet light intensity, the reactivity of the pure air, the wall loss rates of gaseous compounds and particulate matter. And the initial evaluation experiments for SOA yields from the ozonolysis of α-pinene and for mass spectra of the products resulting from the photooxidation of OH initiated isoprene are also presented, which indicate the applicability of this facility on the studies of gas-phase chemical mechanisms as well as the formation of SOA expected in the atmosphere.
基金supported by the National Natural Science Foundation of China(Grant Nos.91844301 and 91544214)National Research Program for Key Issues in Air Pollution Control(DQGG0103)National Key Research and Development Program of China(No.2016YFC0202000:Task 3)。
文摘Severe haze pollution occurs frequently in the winter over the Beijing-Tianjin-Hebei(BTH)region(China),exerting profound impacts on air quality,visibility,and human health.The Chinese Government has taken strict mitigation actions since 2013 and has achieved a significant reduction in the annual mean PM2.5 concentration over this region.However,the level of secondary aerosols during heavy haze episodes showed little decrease during this period.During heavy haze episodes,the concentrations of secondary aerosol components,including sulfate,nitrate and secondary organics,in aerosol particles increase sharply,acting as the main contributors to aerosol pollution.To achieve effective control of particle pollution in the BTH region,the precise and complete secondary aerosol formation mechanisms have been investigated,and advances have been made about the mechanisms of gas phase reaction,nucleation and heterogeneous reactions in forming secondary aerosols.This paper reviews the research progress in aerosol chemistry during haze pollution episodes in the BTH region,lays out the challenges in haze formation studies,and provides implications and directions for future research.
文摘Air pollution is the world's largest single environmental hazard that causes more than a few million premature deaths in 2012(World Health Organization,2014),particularly in developing countries with rapid industrialization and urbanization.Rapid economic growth of China in the last three decades has resulted in serious air pollution problems on both local and regional scales.
基金supported by the National Natural Science Foundation of China(21407158)the"Strategic Priority Research Program"of the Chinese Academy of Sciences(XDB05010300,XDB05040100,XDB05010200)
文摘To investigate the sensitivity of secondary aerosol formation and oxidation capacity to NOx in homogeneous and heterogeneous reactions, a series of irradiated toluene/NOx/air and ?-pinene/NOx/air experiments were conducted in smog chambers in the absence or presence of Al2O3 seed particles. Various concentrations of NOx and volatile organic compounds(VOCs) were designed to simulate secondary aerosol formation under different scenarios for NOx. Under "VOC-limited" conditions, the increasing NOx concentration suppressed secondary aerosol formation, while the increasing toluene concentration not only contributed to the increase in secondary aerosol formation, but also led to the elevated oxidation degree for the organic aerosol. Sulfate formation was suppressed with the increasing NOx due to a decreased oxidation capacity of the photooxidation system. Secondary organic aerosol(SOA) formation also decreased with the presence of high concentration of NOx, because organo-peroxy radicals(RO2) react with NOx instead of with peroxy radicals(RO2 or HO2), resulting in the formation of volatile organic products. The increasing concentration of NOx enhanced the formation of sulfate, nitrate and SOA under "NOx-limited" conditions, in which the heterogeneous reactions played an important role. In the presence of Al2O3 seed particles, a synergetic promoting effect of mineral dust and NOx on secondary aerosol formation in heterogeneous reactions was observed in the photooxidation. This synergetic effect strengthened the positive relationship between NOx and secondary aerosol formation under "NOx-limited" conditions but weakened or even overturned the negative relationship between NOx and secondary aerosol formation under "VOC-limited" conditions. Sensitivity of secondary aerosol formation to NOx seemed different in homogeneous and heterogeneous reactions, and should be both taken into account in the sensitivity study. The sensitivity of secondary aerosol formation to NOx was further investigated under "winter-like" and NH3-rich conditions. No obvious difference for the sensitivity of secondary aerosol formation except nitrate to NOx was observed.
基金supported by the National Key Basic Research and Development Program (No. 2013CB228500)the National Basic Research Program (973) of China (Nos. 2013CB228503, 2013CB228502)+3 种基金National Natural Science Foundation of China (Nos. 91544214, 51636003)the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB05010500)China Postdoctoral Science Foundation (No. 2015M580929)the State Key Lab of Automotive Safety and Energy at Tsinghua University for their support for the experiments
文摘Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds(VOCs). However,little information on secondary aerosol formation from exhaust for Chinese vehicles and fuel conditions is available. In this study, chamber experiments were conducted to quantify the potential of secondary aerosol formation from the exhaust of a port fuel injection gasoline engine. The engine and fuel used are common in the Chinese market, and the fuel satisfies the China V gasoline fuel standard. Substantial secondary aerosol formation was observed during a 4–5 hr simulation, which was estimated to represent more than 10 days of equivalent atmospheric photo-oxidation in Beijing. As a consequence, the extreme case secondary organic aerosol(SOA) production was 426 ± 85 mg/kg-fuel, with high levels of precursors and OH exposure. The low hygroscopicity of the aerosols formed inside the chamber suggests that SOA was the dominant chemical composition. Fourteen percent of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatile organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reductions of emissions of aerosol precursor gases from vehicles are essential to mediate pollution in China.
文摘In a smog chamber, the photooxidation of toluene was initiated by hydroxyl radical (OH.) under different experimental conditions. The size distribution of secondary organic aerosol(SOA) particles from the above reaction was measured using aerodynamic particle sizer spectrometer. It was found from our experimental results that the number of SOA particles increased with increasing the concentration of toluene. As the reaction time prolonged, the sum of SOA particles was also increased. After a reaction time of 130 min, the concentration of secondary organic aerosol particles would be kept constant at 2300 particles/cm^3. Increasing illumination power of blacklamps could significantly induce a higher concentration of secondary organic aerosol particle. The density of SOA particles would also be increased with increasing concentration of CH30NO, however, it would be decreased as soon as the concentration of CH30NO was larger than 225.2 ppm. Nitrogen oxide with initial concentration higher than 30. 1 ppm was also found to have little effect on the formation of secondary organic aerosol.
基金Project supported by the National Natural Science Foundation of China(No.20477043)the Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-SW-H08).*
文摘Hydroxyl radical (.OH)-initiated photooxidation reaction of toluene was carried out in a self-made smog chamber. Four individual seed aerosols such as ammonium sulfate, ammonium nitrate, sodium silicate and calcium chloride, were introduced into the chamber to assess their influence on the growth of secondary organic aerosols (SOA). It was found that the low concentration of seed aerosols might lead to high concentration of SOA particles. Seed aerosols would promote rates of SOA formation at the start of the reaction and inhibit its formation rate with prolonging the reaction time. In the case of ca. 9000 pt/cm^3 seed aerosol load, the addition of sodium silicate induced a same effect on the SOA formation as ammonium nitrate. The influence of the four individual seed aerosols on the generation of SOA decreased in the order of calcium chloride〉sodium silicate and ammonium nitrate〉ammonium sulfate.
基金supported by the National Natural Science Foundation of China (Grant Nos. 21190053 and 21177025)the Shanghai Science and Technology Commission of Shanghai Municipality (Grant Nos. 12DJ1400100 and 13XD 1400700)the Priority Fields for Ph.D. Programs Foundation of the Ministry of Education of China (Grant No.20110071130003)
文摘This paper explores the role of the secondary inorganic aerosol (SIA) species ammonium,NH4+,nitrate,NO3-,and sulfate,SO24-,during haze and fog events using hourly mass concentrations of PM2.5 measured at a suburban site in Hangzhou,China.A total of 546 samples were collected between 1 April and 8 May 2012.The samples were analyzed and classified as clear,haze or fog depending on visibility and relative humidity (RH).The contribution of SIA species to PM2.5 mass increased to ~50% during haze and fog.The mass contribution of nitrate to PM2.5 increased from 11% during clear to 20% during haze episodes.Nitrate mass exceeded sulfate mass during haze,while near equal concentrations were observed during fog episodes.The role of RH on the correlation between concentrations of SIA and visibility was examined,with optimal correlation at 60%-70% RH.The total acidity during clear,haze and fog periods was 42.38,48.38 and 45.51 nmol m-3,respectively,indicating that sulfate,nitrate and chloride were not neutralized by ammonium during any period.The nitrate to sulfate molar ratio,as a function of the ammonium to sulfate molar ratio,indicated that nitrate formation during fog started at a higher ammonium to sulfate molar ratio compared to clear and haze periods.During haze and fog,the nitrate oxidation ratio increased by a factor of 1.6-1.7,while the sulfur oxidation ratio increased by a factor of 1.2-1.5,indicating that both gaseous NO2 and SO2 were involved in the reduced visibility.
基金supported by the Knowledge Innovation Foundation of Chinese Academy of Sciences (No.KJCX2-YW-N24)
文摘Secondary organic aerosol (SOA) formation from hydroxyl radical (OH.) initiated photooxidation of α-pinene was investigated in a home-made smog chamber. The size distribution of SOA particles was measured using aerodynamic particle sizer spectrometer. The effects of illumination intensity and light application time on SOA formation for α-pinene were evaluated. Experimental results show that the concentration of SOA particles increased significantly with an increasing of illumination intensity, and the light application time, the concentration, and the size of SOA particles were also increased. In addition, the factors influencing the formation of SOA were discussed. In addition, this article compared the effect of α-pinene with that of toluene, and discussed the contribution of α-pinene to SOA formation.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB05010200)the National Natural Science Foundation of China(41025012/41121063)+1 种基金NSFC-Guangdong Joint Funds(U0833003)the Guangzhou Institute of Geochemistry(GIGCAS 135 Project Y234161001)
文摘Ammonia(NH3) plays vital roles in new particle formation and atmospheric chemistry. Although previous studies have revealed that it also influences the formation of secondary organic aerosols(SOA) from ozonolysis of biogenic and anthropogenic volatile organic compounds(VOCs), the influence of NH3 on particle formation from complex mixtures such as vehicle exhausts is still poorly understood. Here we directly introduced gasoline vehicles exhausts(GVE) into a smog chamber with NH3 absorbed by denuders to examine the role of NH3 in particle formation from GVE. We found that removing NH3 from GVE would greatly suppress the formation and growth of particles. Adding NH3 into the reactor after 3 h photo-oxidation of GVE, the particle number concentration and mass concentrations jumped explosively to much higher levels, indicating that the numbers and mass of particles might be enhanced when aged vehicle exhausts are transported to rural areas and mixed with NH3-rich plumes. We also found that the presence of NH3 had no significant influence on SOA formation from GVE. Very similar oxygen to carbon(O:C) and hydrogen to carbon(H:C) ratios resolved by aerosol mass spectrometer with and without NH3 indicated that the presence of NH3 also had no impact on the average carbon oxidation state of SOA from GVE.
基金supported by the National Natural Science Foundation of China (Nos. 41475113, 41175018)the CAS Strategic Priority Research Program (No. XDB05010500)
文摘A field experiment from 18 August to 8 September 2006 in Beijing, China, was carried out. A hazy day was defined as visibility 〈 10 km and RH(relative humidity) 〈 90%. Four haze episodes, which accounted for ~ 60% of the time during the whole campaign, were characterized by increases of SNA(sulfate, nitrate, and ammonium) and SOA(secondary organic aerosol) concentrations. The average values with standard deviation of SO2-+4, NO-3, NH4 and SOA were 49.8(± 31.6), 31.4(±22.3), 25.8(±16.6) and 8.9(±4.1) μg/m3, respectively, during the haze episodes, which were 4.3, 3.4, 4.1, and 1.7 times those in the non-haze days. The SO2-4,NO-3, NH+4, and SOA accounted for 15.8%, 8.8%, 7.3%, and 6.0% of the total mass concentration of PM10 during the non-haze days. The respective contributions of SNA species to PM10 rose to about27.2%, 15.9%, and 13.9% during the haze days, while the contributions of SOA maintained the same level with a slight decrease to about 4.9%. The observed mass concentrations of SNA and SOA increased with the increase of PM10 mass concentration, however, the rate of increase of SNA was much faster than that of the SOA. The SOR(sulfur oxidation ratio) and NOR(nitrogen oxidation ratio) increased from non-haze days to hazy days, and increased with the increase of RH. High concentrations of aerosols and water vapor favored the conversion of SO2 to SO2-4and NO2 to NO-3, which accelerated the accumulation of the aerosols and resulted in the formation of haze in Beijing.
基金This work was supported by National Natural Science Foundation of China(Grant No.91644214)Youth Innovation Program of Universities in Shandong Province(Grant No.2019KJD007)Fundamental Research Fund of Shandong University(Grant No.2020QNQT012).
文摘Anthropogenic emissions alter biogenic secondary organic aerosol(SOA)formation from naturally emitted volatileorganic compounds(BVOCs).We review the major laboratory and field findings with regard to effects of anthropogenicpollutants(NO_(x),anthropogenic aerosols,SO_(2),NH_(3))on biogenic SOA formation.NO_(x) participate in BVOC oxidationthrough changing the radical chemistry and oxidation capacity,leading to a complex SOA composition and yield sensitivitytowards NO_(x) level for different or even specific hydrocarbon precursors.Anthropogenic aerosols act as an importantintermedium for gas-particle partitioning and particle-phase reactions,processes of which are influenced by the particlephase state,acidity,water content and thus associated with biogenic SOA mass accumulation.SO_(2)modifies biogenic SOAformation mainly through sulfuric acid formation and accompanies new particle formation and acid-catalyzedheterogeneous reactions.Some new SO_(2)-involved mechanisms for organosulfate formation have also been proposed.NH_(3)/amines,as the most prevalent base species in the atmosphere,influence biogenic SOA composition and modify theoptical properties of SOA.The response of SOA formation behavior to these anthropogenic pollutants varies amongdifferent BVOCs precursors.Investigations on anthropogenic-biogenic interactions in some areas of China that aresimultaneously influenced by anthropogenic and biogenic emissions are summarized.Based on this review,somerecommendations are made for a more accurate assessment of controllable biogenic SOA formation and its contribution tothe total SOA budget.This study also highlights the importance of controlling anthropogenic pollutant emissions witheffective pollutant mitigation policies to reduce regional and global biogenic SOA formation.
基金the Institute for Research on Catalysis and the Environment of Lyon(IRCELYON)supported by the"Investissement d’Avenir"PEPS Program Project(ASTRAL)of the University of Lyon and French National center for Scientific Research(French:center national de la recherche scientifique,CNRS)as part of the ANR-11-IDEX-0007 programby the European Research Council under the Horizon 2020 Research and Innovation Program Project of the European Union under Convention N°690958(MARSU)。
文摘Photochemical aging of volatile organic compounds(VOCs)in the atmosphere is an important source of secondary organic aerosol(SOA).To evaluate the formation potential of SOA at an urban site in Lyon(France),an outdoor experiment using a Potential Aerosol Mass(PAM)oxidation flow reactor(OFR)was conducted throughout entire days during JanuaryFebruary 2017.Diurnal variation of SOA formations and their correlation with OH radical exposure(OHexp),ambient pollutants(VOCs and particulate matters,PM),Relative Humidity(RH),and temperature were explored in this study.Ambient urban air was exposed to high concentration of OH radicals with OHexp in range of(0.2-1.2)×10^12 molecule/(cm^3·sec),corresponding to several days to weeks of equivalent atmospheric photochemical aging.The results informed that urban air at Lyon has high potency to contribute to SOA,and these SOA productions were favored from OH radical photochemical oxidation rather than via ozonolysis.Maximum SOA formation(36μg/m^3)was obtained at OHexp of about 7.4×10^11 molecule/(cm^3·sec),equivalent to approximately 5 days of atmospheric oxidation.The correlation between SOA formation and ambient environment conditions(RH&temperature,VOCs and PM)was observed.It was the first time to estimate SOA formation potential from ambient air over a long period in urban environment of Lyon.
基金supported by the National Natural Science Foundation of China(No.91644214)the Shandong Natural Science Fund for Distinguished Young Scholars(No.JQ201705)。
文摘Methylglyoxal(CH3COCHO,MG),which is one of the most abundant α-dicarbonyl compounds in the atmosphere,has been reported as a major source of secondary organic aerosol(SOA).In this work,the reaction of MG with hydroxyl radicals was studied in a 500 L smog chamber at(293±3)K,atmospheric pressure,(18±2)%relative humidity,and under different NOx and SO2.Particle size distribution was measured by using a scanning mobility particle sizer(SMPS)and the results showed that the addition of SO2 can promote SOA formation,while different NOx concentrations have different influences on SOA production.High NOx suppressed the SOA formation,whereas the particle mass concentration,particle number concentration and particle geometric mean diameter increased with the increasing NOx concentration at low NOx concentration in the presence of SO2.In addition,the products of the OH-initiated oxidation of MG and the functional groups of the particle phase in the MG/OH/SO2 and MG/OH/NOx/SO2 reaction systems were detected by gas chromatography mass spectrometry(GC-MS)and attenuated total reflection fourier transformed infrared spectroscopy(ATR-FTIR)analysis.Two products,glyoxylic acid and oxalic acid,were detected by GC-MS.The mechanism of the reaction of MG and OH radicals that follows two main pathways,H atom abstraction and hydration,is proposed.Evidence is provided for the formation of organic nitrates and organic sulfate in particle phase from IR spectra.Incorporation of NOx and SO2 influence suggested that SOA formation from anthropogenic hydrocarbons may be more efficient in polluted environment.
基金supported by the Knowledge Innovation Foundation of Chinese Academy of Sciences (No. KJCX2-YW-N24)
文摘Photooxidation of isoprene leads to the formation of secondary organic aerosol (SOA). In this study, the chemical composition of SOA formed from OH-initiated photooxidation of isoprene has been investigated with gas chromatography/mass spectrometry (GC/MS) and a home-made aerosol time-of-fiight mass spectrometer. Sampling particles generated in a home-made smog chamber. The size distribution of SOA particles was detected by a TSI 3321 aerodynamic particle size spectrometer in real time. Results showed that SOA created by isoprene photooxidation was predominantly in the form of fine particles, which have diameters less than 2.5 μm. The obtained mass spectra of individual particles show that products of the OH-initiated oxidation of isoprene contain methyl vinyl ketone, methacrolein, formaldehyde, and some other hydroxycarbonyls. The possible reaction mechanisms leading to these products were also discussed.
基金supported by the National Key R&D Program of China(No.2022YFF0802501)the Key Research and Development Program of Shaanxi Province(No.2018-ZDXM3-01)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2019402)。
文摘In this study,online water-soluble inorganic ions were detected to deduce the formation mechanism of secondary inorganic aerosol in Xianyang,China during wintertime.The dominant inorganic ions of sulfate(SO_(4)^(2-)),nitrate(NO_(3)^(-)),and ammonium(NH_(4)^(+))(the sum of those is abbreviated as SNA)accounted for 17%,21%,and 12% of PM_(2.5)mass,respectively.While the air quality deteriorated from excellent to poor grades,the precursor gas sulfur dioxide(SO_(2))of SO_(4)^(2-)increased and then decreased with a fluctuation,while nitrogen dioxide(NO_(2))and ammonia(NH_(3)),precursors of NO_(3)^(-)and NH_(4)^(+),and SNA show increasing trends.Meteorological factors including boundary layer height(BLH),temperature,and wind speed also show decline trends,except relative humidity(RH).Meanwhile,the secondary conversion ratio shows a remarkable increasing trend,indicating that there was a strong secondary transformation.From the perspective of chemical mechanisms,RH is positively correlated with sulfur oxidation ratios(SOR),nitrogen oxidation ratios(NOR),and ammonia conversion ratios,representing that the increase of humidity could promote the generation of SNA.Notably,SOR and NOR were also positively related to the ammonia.On the one hand,the low wind speed and BLH led to the accumulation of pollutants.On the other hand,the increases of RH and ammonia promoted more formations of SNA and PM_(2.5).The results advance our identification of the contributors to the haze episodes and assist to establish more efficient emission controls in Xianyang,in addition to other cities with similar emission and geographical characteristics.
基金National Natural Science Foundation of China (Nos.22125303,92061203,and 22288201)the National Key Research and Development Program of China (No.2021YFA1400501)+3 种基金Innovation Program for Quantum Science and Technology (No.2021ZD0303304)Dalian Institute of Chemical Physics (No.DICP DCLS201702)Chinese Academy of Sciences (No.GJJSTD20220001)K.C.Wong Education Foundation (No.GJTD-2018-06)。
文摘Elucidating the effects of anthropogenic pollutants on the photooxidation of biogenic volatile organic compounds is crucial to understanding the fundamental mechanisms of secondary organic aerosol(SOA)formation.Here,the impacts of NO_(2)and SO_(2)on SOA formation from the photooxidation of a representative monoterpene,β-pinene,were investigated by a number of laboratory studies.The results indicated NO_(2)enhanced the SOA mass concentrations and particle number concentrations under both low and highβ-pinene conditions.This could be rationalized that the increased O_(3)concentrations upon the NO_(x)photolysis was helpful for the generation of more amounts of O_(3)-oxidized products,which accelerated the SOA nucleation and growth.Combing with NO_(2),the promotion of the SOA yield by SO_(2)was mainly reflected in the increase of mass concentration,which might be due to the elimination of the newly formed particles by the initially formed particles.The observed low oxidation degree of SOA might be attributed to the fast growth of SOA,resulting in the uptake of less oxygenated gas-phase species onto the particle phase.The present findings have important implications for SOA formation affected by anthropogenic–biogenic interactions in the ambient atmosphere.
基金supported by the National Natural Science Foundation of China(Nos.42130606,42022039)the Fund of the Beijing National Laboratory for Molecular Sciences China(No.BNLMS-CXXM-202011)the Project of the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.Y2021013).
文摘Unsaturated ketones are typical oxygenated volatile organic compounds(OVOCs)with high reactivity,and are important precursors in air pollution.The sources of OVOCs are complex and include direct emissions and secondary oxidation formation of VOCs in the atmosphere.2-Cyclohexen-1-one is a widespread substance,and is derived from the industrial catalytic oxidation of cyclohexene.In this paper,we investigated the rate constants of the chemical reactions of 2-cyclohexen-1-one with NO_(3) radicals,which is(7.25±0.29)×10^(-15) cm^(3)·molecule^(-1)·s^(-1) at 298 K and under 1 atm(1 atm=101325Pa).It supplemented the kinetics of NO_(3) radicals database,and revealed its effects in the nighttime atmosphere.In addition,the reaction products of 2-cyclohexen-1-one with NO_(3) radicals were detected by Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS),which revealed a series of nitrate esters in the composition of the secondary organic aerosol(SOA),which may reduce atmospheric visibility.Finally,the possible pathways for the generation of the products were developed.