Leaf color is directly related to altered photosynthesis.Hence,leaf yellowing mutants can be widely used for the researching plant physiology and functional genomes,for cultivating new varieties of popular horticultur...Leaf color is directly related to altered photosynthesis.Hence,leaf yellowing mutants can be widely used for the researching plant physiology and functional genomes,for cultivating new varieties of popular horticultural plants,and for identifying hybrid purity(as markers).Here,we constructed a^(60)Co-γF_(2)population from the leaf-yellowing mutant R24 via radiation mutation with the inbred line WT21 of pepper.Genetic analysis showed that the leaf-yellowing of the mutant was controlled by a single recessive gene.By applying the Bulk Segregation Analysis and Kompetitive Allele Specific PCR markers,the leaf-yellowing gene CaLY1(Capsicum annuum Leaf yellow 1)was mapped on chromosome 9,SNP5791587-SNP6011215,with a size of 214.5 kb.One non-synonymous mutated gene Capana09g000166 was found in the interval.The gene encoded a Psb X,which is the core complex of PSⅡ.Transcriptome analysis further showed that 2301 differentially expressed genes were identified under shading treatment for 24 h in R24.The Gene Ontology enrichment pathways were related to photosynthesis light harvesting,cell wall,activity of quercetin 3-O-glucosyltransferase and flavonoid metabolic process,which likely regulate the response of pepper leaves to different light levels.Functional enrichment analysis indicated that the most abundant pathways were photosynthesis antenna proteins and metabolic.展开更多
Light quality and intensity can have a significant impact on plant health and crop productivity.Chlorophylls and carotenoids are classes of plant pigments that are responsible for harvesting light energy and protectin...Light quality and intensity can have a significant impact on plant health and crop productivity.Chlorophylls and carotenoids are classes of plant pigments that are responsible for harvesting light energy and protecting plants from the damaging effects of intense light.Our understanding of the role played by plant pigments in light sensitivity has been aided by light-sensitive mutants that change colors upon exposure to light of variable intensity.In this study,we conducted transcriptomic,metabolomic,and hormone analyses on a novel yellowing mutant of pepper(yl1)to shed light on the molecular mechanism that regulates the transition from green to yellow leaves in this mutant upon exposure to high-intensity light.Our results revealed greater accumulation of the carotenoid precursor phytoene and the carotenoids phytofluene,antheraxanthin,and zeaxanthin in yl1 compared with wild-type plants under high light intensity.A transcriptomic analysis confirmed that enzymes involved in zeaxanthin and antheraxanthin biosynthesis were upregulated in yl1 upon exposure to high-intensity light.We also identified a single basic helix–loop–helix(bHLH)transcription factor,bHLH71-like,that was differentially expressed and positively correlated with light intensity in yl1.Silencing of bHLH71-like in pepper plants suppressed the yellowing phenotype and led to reduced accumulation of zeaxanthin and antheraxanthin.We propose that the yellow phenotype of yl1 induced by high light intensity could be caused by an increase in yellow carotenoid pigments,concurrent with a decrease in chlorophyll accumulation.Our results also suggest that bHLH71-like functions as a positive regulator of carotenoid biosynthesis in pepper.展开更多
Yellow mealworm larvae(YML;Tenebrio molitor) are considered as a valuable insect species for animal feed due to their high nutritional values and ability to grow under different substrates and rearing conditions. Adva...Yellow mealworm larvae(YML;Tenebrio molitor) are considered as a valuable insect species for animal feed due to their high nutritional values and ability to grow under different substrates and rearing conditions. Advances in the understanding of entomophagy and animal nutrition over the past decades have propelled research areas toward testing multiple aspects of YML to exploit them better as animal feed sources. This review aims to summarize various approaches that could be exploited to maximize the nutritional values of YML as an animal feed ingredient. In addition, YML has the potential to be used as an antimicrobial or bioactive agent to improve animal health and immune function in production animals. The dynamics of the nutritional profile of YML can be influenced by multiple factors and should be taken into account when attempting to optimize the nutrient contents of YML as an animal feed ingredient. Specifically, the use of novel land-based and aquatic feeding resources, probiotics, and the exploitation of larval gut microbiomes as novel strategies can assist to maximize the nutritional potential of YML. Selection of relevant feed supplies, optimization of ambient conditions, the introduction of novel genetic selection procedures, and implementation of effective post-harvest processing may be required in the future to commercialize mealworm production. Furthermore, the use of appropriate agricultural practices and technological improvements within the mealworm production sector should be aimed at achieving both economic and environmental sustainability. The issues highlighted in this review could pave the way for future approaches to improve the nutritional value of YML.展开更多
In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical propertie...In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical properties of silt and sand from the Yellow Sea were measured using a direct shear apparatus and their microstructures were observed using a scanning electron microscope.The test results suggest that the shear strength of silt and sand increases linearly with the increase of normal stress.Based on the direct shear test,the scanning electron microscope was used to observe the section surface of sand.It is observed that the section surface becomes rough,with many“V”‐shaped cracks.Many particles appear on the surface of the silt structure and tend to be disintegrated.The X‐ray diffraction experiment reveals that the sand and silt have different compositions.The shear strength of sand is slightly greater than that of silt under high stress,which is related to the shape of soil particles and the mineral composition.These results can be a reference for further study of other soils in the Yellow Sea;meanwhile,they can serve as soil parameters for the stability and durability analyses of offshore infrastructure construction.展开更多
Osteosarcoma is a very serious primary bone cancer with a high death rate and a dismal prognosis.Since there is no permanent therapy for this condition,it is necessary to develop a cure.Therefore,this investigation wa...Osteosarcoma is a very serious primary bone cancer with a high death rate and a dismal prognosis.Since there is no permanent therapy for this condition,it is necessary to develop a cure.Therefore,this investigation was carried out to assess the impacts and biological functions of hydroxysafflor yellow A(HYSA)in osteosarcoma cell lines(MG63).In this investigational study,MG63 cells were utilized.Microarray experiments,quantitative polymerase chain reaction(qPCR),immunofluorescent staining,extracellular acidification rate(ECAR),oxygen consumption rate(OCR),glucose consumption,lactate production,and ATP levels,proliferation assay,5-Ethynyl-2′-deoxyuridine(EDU)staining,and Western blot were performed.In MG63 cells,HYSA lowered cell proliferation and metastasis rates,suppressed EDU cell number,and enhanced caspase-3/9 activity levels.HYSA reduced the Warburg effect and induced ferroptosis(FPT)in MG63 cells.Inhibiting ferroptosis diminished HYSA’s anti-cancer activities in MG63 cells.The stimulation of the HIF-1α/SLC7A11 pathway decreased HYSA’s anti-cancer activities in MG63 cells.HIF-1αis one target spot for HYSA in a model of osteosarcoma cancer(OC).HYSA altered HIF-1α’s thermophoretic activity;following binding with HYSA,HIF-1α’s melting point increased from~55°C to~60°C.HYSA significantly enhanced the thermal stability of exogenous WT HIF-1αwhile not affecting Mut HIF-1α,suggesting that ARG-311,GLY-312,GLN-347,and GLN-387 may be involved in the interaction between HIF-1αand HYSA.Conclusively,our study revealed that HYSA induced FPT and reduced the Warburg effect of OC through mitochondrial damage by HIF-1α/HK2/SLC7A11 pathway.HYSA is a possible therapeutic option for OC or other cancers.展开更多
Leaf color mutants in higher plants are considered to be ideal materials for studying the chlorophyll biosynthesis,photosynthesis mechanism and chloroplast development.Herein,we identified a spontaneous mutant,yc412,i...Leaf color mutants in higher plants are considered to be ideal materials for studying the chlorophyll biosynthesis,photosynthesis mechanism and chloroplast development.Herein,we identified a spontaneous mutant,yc412,in cultivated cucumber that exhibited yellow cotyledons.The yellow-lethal mutant was diagnosed with an abnormal chloroplast ultrastructure,and reduced photosynthetic capacity and pigment content.Through bulked segregant analysis-based whole-genome sequencing and fine genetic mapping,we narrowed the yellow cotyledons (yc) locus to a 96.8 kb interval on chromosome 3.By resequencing and molecular cloning,we showed that Csyc is a potential candidate gene,which encodes a yellow stripe-like (YSL) transporter.The T to C mutation in the promoter region of Csyc caused the yellow cotyledon phenotype in yc412.Compared to YZU027A (WT),the expression of Csyc was significantly downregulated in the cotyledons of yc412.Silencing of Csyc in cucumber via virus-induced gene silencing resulted in chlorotic leaves,mainly by suppressing the chlorophyll content.Furthermore,a comparative transcriptome analysis revealed that chloroplast-related genes and chlorophyll biosynthesis genes were significantly downregulated in yc412 cotyledons.Our results provide new insights into the molecular function of the YSL transporter in plant chloroplast development and chlorophyll synthesis.展开更多
The Yellow Sea(YS)and East China Sea(ECS)are highly dynamic marginal seas of the northwestern Pacific Ocean.To gain an in-depth understanding of zooplankton community structure,zooplankton abundance,biovolume,and size...The Yellow Sea(YS)and East China Sea(ECS)are highly dynamic marginal seas of the northwestern Pacific Ocean.To gain an in-depth understanding of zooplankton community structure,zooplankton abundance,biovolume,and size structure in summer 2017 in the YS and ECS were assessed using ZooScan imaging analysis.Zooplankton abundance and biovolume ranged 2.94–1187.14 inds./m^(3)and 3.13–3438.51 mm^(3)/m^(3),respectively.Based on the biovolume data of the categorized size classes of 26 identified taxonomic groups,the zooplankton community was classified into five groups,and each group was coupled with distinctive oceanographic features.Under the influence of the Yellow Sea Cold Water Mass,the Yellow Sea offshore group featured the lowest bottom temperature(10.84±3.42℃)and the most abundant Calanoids(mainly in the 2–3 mm size class).In the Yellow Sea inshore group,Hydrozoans showed the largest biovolume and dominated in the 3–4-mm and>5-mm size classes.The East China Sea offshore group,which was affected by the Kuroshio Branch Current,featured high temperature and salinity,and the lowest bottom dissolved oxygen(2.58±0.5 mg/L).The lowest values of zooplankton abundance and biovolume in the East China Sea offshore group might be attributed to the bottom dissolved oxygen contents.The East China Sea inshore group,which was mainly influenced by the Zhejiang-Fujian Coastal Current and Changjiang Diluted Water,was characterized by high chlorophyll a and the largest biovolume of carnivorous Siphonophores(280.82±303.37 mm^(3)/m^(3)).The Changjiang River estuary offshore group showed the most abundant Cyclopoids,which might be associated with the less turbid water mass in this region.Seawater temperature was considered the most important factor in shaping the size compositions of Calanoids in different groups.展开更多
The yellow seed trait is preferred by breeders for its potential to improve the seed quality and commercial value of Brassica napus.In the present study,we produced yellow seed mutants using a CRISPR/Cas9 system when ...The yellow seed trait is preferred by breeders for its potential to improve the seed quality and commercial value of Brassica napus.In the present study,we produced yellow seed mutants using a CRISPR/Cas9 system when the two BnPAP2 homologs were knocked out.Histochemical staining of the seed coat demonstrated that proanthocyanidin accumulation was significantly reduced in the pap2 double mutants and decreased specifically in the endothelial and palisade layer cells of the seed coat.Transcriptomic and metabolite profiling analysis suggested that disruption of the BnPAP2 genes could reduce the expression of structural and regulated genes in the phenylpropanoid and flavonoid biosynthetic pathways.The broad suppression of these genes might hinder proanthocyanidin accumulation during seed development,and thereby causing the yellow seed trait in B.napus.These results indicate that BnPAP2 might play a vital role in the regulatory network controlling proanthocyanidin accumulation.展开更多
Objective:To determine the protective effect of co-enzyme Q10(CoQ10)on testicular tissue and sperm parameters in male rats treated with SunsetYellow FCF.Methods:Sixty male Sprague-Dawley rats were randomly divided int...Objective:To determine the protective effect of co-enzyme Q10(CoQ10)on testicular tissue and sperm parameters in male rats treated with SunsetYellow FCF.Methods:Sixty male Sprague-Dawley rats were randomly divided into 6 groups of the control,CoQ10(10 mg/kg/day),low dose of Sunset Yellow(2.5 mg/kg),high dose of Sunset Yellow(70 mg/kg),low dose of Sunset Yellow(2.5 mg/kg)plus CoQ10,and high dose of Sunset Yellow(70 mg/kg)plus CoQ10.The drugs were administered via daily oral gavages for 6 weeks.At the end of the experiment,sperm analysis,stereological and histological assessments of the testis were carried out.Results:The normal morphology(by 41.1%)and progressive spermatozoa(by 74.8%),testicle volume(by 33.4%),lumen volume(by 38.3%),interstitial tissue volume(by 44.7%),seminiferous tubule volume(by 40.7%),and number of spermatogonia(by 53.9%)and Leydig cells(by 70.7%)reduced in the rats that received high doses of Sunset Yellow in comparison to the control group.Nonetheless,all these alterations were recovered by CoQ10 treatment in the CoQ10 plus high dose of Sunset Yellow group.Furthermore,low doses of Sunset Yellow did not affect different parameters of the testis and sperm.Conclusions:CoQ10 could,to some extent,prevent structural changes of the testis induced by the high dose of SunsetYellow.展开更多
In 2022,Yellow Sea green tide caused by Ulva prolifera reached a historic minimum and the coastal areas of Shandong Peninsula were less affected.However,the largest amount of seaweed biomass has been washed ashore on ...In 2022,Yellow Sea green tide caused by Ulva prolifera reached a historic minimum and the coastal areas of Shandong Peninsula were less affected.However,the largest amount of seaweed biomass has been washed ashore on Lianyungang and Rizhao coasts since 2015.We studied the development pattern of Yellow Sea green tide in 2022,and analyzed the key environmental factors on the growth and drifting,then discussed the possible reasons that resulted in the massive stranding of green tide biomass in Lianyungang and Rizhao.Results show under the combined influence of the east to southeast winds and currents with shoreward anomalies,green tide drifted to the coastal waters between Shandong and Jiangsu provinces and the distribution areas located westward compared with previous years(2008–2021).Floating U.prolifera rafts from the coastal waters of Binhai and Sheyang drifted continuously into the coastal waters of Lianyungang and Rizhao,providing important supplements for Yellow Sea green tide.Because green tide in 2022 distributed close to the coastal waters,the abundant nutrients might support their continuous high growth rate.In addition,the amount of rainfall around Shandong Peninsula from late June to early July were significantly higher than in previous years,which might promote the development of green tide to some extent.展开更多
Natural radionuclides are powerful tools for understanding the sources and fate of suspended particulate matter(SPM).Particulate matter with different particle sizes behaves differently with respect to adsorption and ...Natural radionuclides are powerful tools for understanding the sources and fate of suspended particulate matter(SPM).Particulate matter with different particle sizes behaves differently with respect to adsorption and desorption.We analyzed the activi-ties and distribution characteristics of multiple natural radionuclides(238U,226Ra,40K,228Ra,7Be and 210Pbex)on size-fractionated SPM at the Lijin Hydrographic Station(Huanghe or Yellow River)every month over a one-year period.Results showed that medium silt(16–32µm)was the main component.As expected,the activity of each radionuclide decreased with an increase of particle size.We examined the sources of SPM with different particle sizes using activity ratios of 226Ra/238U,228Ra/226Ra,40K/238U and 7Be/210Pbex,and concluded that SPM with different particle sizes originated from different sources.Our results indicate that fine SPM(<32µm)was mainly from the erosion of soil along the lower reaches of the Yellow River,while coarse SPM(>32µm)was mainly derived from resuspension of riverbed sediment.During high runoff periods,the concentration of SPM increased significantly,and the pro-portion of fine particles originating upstream increased.Naturally occurring radioactive isotopes,especially on size-fractionated par-ticles,are therefore seen as useful tracers to understand the sources and behaviors of riverine particles transported from land to sea.展开更多
The study, conducted at the Research Farm of the College of Agriculture, University of Tabriz in 2021, focused on the effects of various nitrogen-fixing bacterial isolates, biofertilizers containing nitrogen and phosp...The study, conducted at the Research Farm of the College of Agriculture, University of Tabriz in 2021, focused on the effects of various nitrogen-fixing bacterial isolates, biofertilizers containing nitrogen and phosphorus, as well as iron and zinc foliar applications on mustard growth under rainfed conditions. The results indicated that biofertilizers, whether used alone or in combination with chemical fertilizers, produced comparable grain and oil outputs compared to chemical fertilizers alone. Additionally, the application of iron and zinc through foliar spraying significantly enhanced both grain and oil production. These findings suggest that integrating nitrogen-fixing bacteria and biofertilizers could reduce reliance on chemical nitrogenous fertilizers, leading to decreased production expenses, improved product quality, and minimized environmental impact. This study highlights the potential for sustainable agricultural practices in dry land farming as a viable alternative to traditional chemical-intensive methods. Substituting chemical nitrogenous fertilizers with nitrogen-fixing bacteria or biofertilizers could result in cost savings in mustard grain and oil production while promoting environmental sustainability.展开更多
Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil aroun...Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil around submarine pipelines is prone to local scour,severely affecting their operational safety.With the Yellow River Delta as the research area and based on the renormalized group(RNG)k-εturbulence model and Stokes fifth-order wave theory,this study solves the Navier-Stokes(N-S)equation using the finite difference method.The volume of fluid(VOF)method is used to describe the fluid-free surface,and a threedimensional numerical model of currents and waves-submarine pipeline-silty sandy seabed is established.The rationality of the numerical model is verified using a self-built waveflow flume.On this basis,in this study,the local scour development and characteristics of submarine pipelines in the Yellow River Delta silty sandy seabed in the prototype environment are explored and the influence of the presence of pipelines on hydrodynamic features such as surrounding flow field,shear stress,and turbulence intensity is analyzed.The results indicate that(1)local scour around submarine pipelines can be divided into three stages:rapid scour,slow scour,and stable scour.The maximum scour depth occurs directly below the pipeline,and the shape of the scour pits is asymmetric.(2)As the water depth decreases and the pipeline suspension height increases,the scour becomes more intense.(3)When currents go through a pipeline,a clear stagnation point is formed in front of the pipeline,and the flow velocity is positively correlated with the depth of scour.This study can provide a valuable reference for the protection of submarine pipelines in this area.展开更多
Citrus yellow vein clearing virus(CYVCV)is a new citrus virus that has become an important factor restricting the development of China’s citrus industry,and the CYVCV coat protein(CP)is associated with viral pathogen...Citrus yellow vein clearing virus(CYVCV)is a new citrus virus that has become an important factor restricting the development of China’s citrus industry,and the CYVCV coat protein(CP)is associated with viral pathogenicity.In this study,the Eureka lemon zinc finger protein(ZFP)ClDOF3.4 was shown to interact with CYVCV CP in vivo and in vitro.Transient expression of ClDOF3.4 in Eureka lemon induced the expression of salicylic acid(SA)-related and hypersensitive response marker genes,and triggered a reactive oxygen species burst,ion leakage necrosis,and the accumulation of free SA.Furthermore,the CYVCV titer in ClDOF3.4 transgenic Eureka lemon plants was approximately 69.4%that in control plants 6 mon after inoculation,with only mild leaf chlorotic spots observed in those transgenic plants.Taken together,the results indicate that ClDOF3.4 not only interacts with CP but also induces an immune response in Eureka lemon by inducing the SA pathways.This is the first report that ZFP is involved in the immune response of a citrus viral disease,which provides a basis for further study of the molecular mechanism of CYVCV infection.展开更多
Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was c...Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was conducted to explore the effect of external environment(wetting-drying cycles and acidic conditions)on the soil aggregate distribution and stability and identify the key soil physicochemical factors that affect the soil aggregate stability.The yellow‒brown soil from the Three Gorges Reservoir area(TGRA)was used,and 8 wetting-drying conditions(0,1,2,3,4,5,10 and 15 cycles)were simulated under 4 acidic conditions(pH=3,4,5 and 7).The particle size distribution and soil aggregate stability were determined by wet sieving method,the contribution of environmental factors(acid condition,wetting-drying cycle and their combined action)to the soil aggregate stability was clarified and the key soil physicochemical factors that affect the soil aggregate stability under wetting-drying cycles and acidic conditions were determined by using the Pearson’s correlation analysis,Partial least squares path modeling(PLS‒PM)and multiple linear regression analysis.The results indicate that wetting-drying cycles and acidic conditions have significant effects on the stability of soil aggregates,the soil aggregate stability gradually decreases with increasing number of wetting-drying cycles and it obviously decreases with the increase of acidity.Moreover,the combination of wetting-drying cycles and acidic conditions aggravate the reduction in the soil aggregate stability.The wetting-drying cycles,acidic conditions and their combined effect imposes significant impact on the soil aggregate stability,and the wetting-drying cycles exert the greatest influence.The soil aggregate stability is significantly correlated with the pH,Ca^(2+),Mg^(2+),maximum disintegration index(MDI)and soil bulk density(SBD).The PLS‒PM and multiple linear regression analysis further reveal that the soil aggregate stability is primarily influenced by SBD,Ca^(2+),and MDI.These results offer a scientific basis for understanding the soil aggregate breakdown mechanism and are helpful for clarifying the coupled effect of wetting-drying cycles and acid rain on terrestrial ecosystems in the TGRA.展开更多
Analysing runoff changes and how these are affected by climate change and human activities is deemed crucial to elucidate the ecological and hydrological response mechanisms of rivers.The Indicators of Hydrologic Alte...Analysing runoff changes and how these are affected by climate change and human activities is deemed crucial to elucidate the ecological and hydrological response mechanisms of rivers.The Indicators of Hydrologic Alteration and the Range of Variability Approach(IHA-RVA)method,as well as the ecological indicator method,were employed to quantitatively assess the degree of hydrologic change and ecological response processes in the Yellow River Basin from 1960 to 2020.Using Budyko's water heat coupling balance theory,the relative contributions of various driving factors(such as precipitation,potential evapotranspiration,and underlying surface)to runoff changes in the Yellow River Basin were quantitatively evaluated.The results show that the annual average runoff and precipitation in the Yellow River Basin had a downwards trend,whereas the potential evapotranspiration exhibited an upwards trend from 1960 to 2020.In approximately 1985,it was reported that the hydrological regime of the main stream underwent an abrupt change.The degree of hydrological change was observed to gradually increase from upstream to downstream,with a range of 34.00%-54.00%,all of which are moderate changes.However,significant differences have been noted among different ecological indicators,with a fluctuation index of 90.00%at the outlet of downstream hydrological stations,reaching a high level of change.After the mutation,the biodiversity index of flow in the middle and lower reaches of the Yellow River was generally lower than that in the base period.The research results also indicate that the driving factor for runoff changes in the upper reach of the Yellow River Basin is mainly precipitation,with a contribution rate of 39.31%-54.70%.Moreover,the driving factor for runoff changes in the middle and lower reaches is mainly human activities,having a contribution rate of 63.70%-84.37%.These results can serve as a basis to strengthen the protection and restoration efforts in the Yellow River Basin and further promote the rational development and use of water resources in the Yellow River.展开更多
Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada...Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada, during 2019, the National Collision Database shows that 28% of traffic fatalities and 42% of serious injuries occurred at intersections. Likewise, the U.S. National Highway Traffic Administration (NHTSA) found that about 40% of the estimated 5,811,000 accidents in the U.S. during the year studied were intersection-related crashes. In fact, a major survey by the car insurance industry found that nearly 85% of drivers could not identify the correct action to take when approaching a yellow traffic light at an intersection. One major reason for these accidents is the “yellow light dilemma,” the ambiguous situation where a driver should stop or proceed forward when unexpectedly faced with a yellow light. This situation is even further exacerbated by the tendency of aggressive drivers to inappropriately speed up on the yellow just to get through the traffic light. A survey of Canadian drivers conducted by the Traffic Injury Research Foundation found that 9% of drivers admitted to speeding up to get through a traffic light. Another reason for these accidents is the increased danger of making a left-hand turn on yellow. According to the National Highway Traffic Safety Association (NHTSA), left turns occur in approximately 22.2% of collisions—as opposed to just 1.2% for right turns. Moreover, a study by CNN found left turns are three times as likely to kill pedestrians than right turns. The reason left turns are so much more likely to cause an accident is because they take a driver against traffic and in the path of oncoming cars. Additionally, most of these left turns occur at the driver’s discretion—as opposed to the distressingly brief left-hand arrow at busy intersections. Drive Safe Now proposes a workable solution for reducing the number of accidents occurring during a yellow light at intersections. We believe this fairly simple solution will save lives, prevent injuries, reduce damage to public and private property, and decrease insurance costs.展开更多
With the loss of substantial natural wetlands in coastal zones,artificial wetlands provide alternative habitats for many shorebirds.Scientific management of artificial wetlands used by shorebirds plays an important ro...With the loss of substantial natural wetlands in coastal zones,artificial wetlands provide alternative habitats for many shorebirds.Scientific management of artificial wetlands used by shorebirds plays an important role in maintaining the stability of shorebird population.Satellite tracking technique can obtain high-precision location information of individuals day and night,providing a good technical support for the study of quantitative relationship between waterfowls and their habitats.In this study,satellite tracking method,Remote Sensing(RS)and Geographic Information System(GIS)technology were used to analyze the activity pattern and habitat utilization characteristics of Pied Avocet during breeding period in an artificial wetland complex in the Yellow River Delta(YRD),China.The results showed that the breeding Pied Avocets had a small range of activity,with a total core and main home range of 33.10 km^(2) and 216.30 km^(2),respectively.This species tended to forage in the pond and salt pan during the day and night,respectively,with an unfixed staying time in the breeding ground.The distance between breeding ground and feeding ground was less than 6 km.It is emphasized that in addition to improving the conditions of the remaining natural habitats,effective managing artificial habitats is a priority for shorebird conservation.This research could provide reference for the management of artificial wetlands in coastal zones and supply technique support for the protection of shorebirds and their habitats,and alleviate human-bird conflicts and sustainable development of coastal zones.展开更多
Mussel aquaculture and large yellow croaker aquaculture areas and their environmental characteristics in Zhoushan were analyzed using satellite data and in-situ surveys.A new two-step remote sensing method was propose...Mussel aquaculture and large yellow croaker aquaculture areas and their environmental characteristics in Zhoushan were analyzed using satellite data and in-situ surveys.A new two-step remote sensing method was proposed and applied to determine the basic environmental characteristics of the best mussel and large yellow croaker aquaculture areas.This methodology includes the first step of extraction of the location distribution and the second step of the extraction of internal environmental factors.The fishery ranching index(FRI1,FRI2)was established to extract the mussel and the large yellow croaker aquaculture area in Zhoushan,using Gaofen-1(GF-1)and Gaofen-6(GF-6)satellite data with a special resolution of 2 m.In the second step,the environmental factors such as sea surface temperature(SST),chlorophyll a(Chl-a)concentration,current and tide,suspended sediment concentration(SSC)in mussel aquaculture area and large yellow croaker aquaculture area were extracted and analyzed in detail.The results show the following three points.(1)For the extraction of the mussel aquaculture area,FRI1 and FRI2 are complementary,and the combination of FRI1 and FRI2 is suitable to extract the mussel aquaculture area.As for the large yellow croaker aquaculture area extraction,FRI2 is suitable.(2)Mussel aquaculture and the large yellow croaker aquaculture area in Zhoushan are mainly located on the side near the islands that are away from the eastern open waters.The water environment factor template suitable for mussel and large yellow croaker aquaculture was determined.(3)This two-step remote sensing method can be used for the preliminary screening of potential site selection for the mussels and large yellow croaker aquaculture area in the future.the fishery ranching index(FRI1,FRI2)in this paper can be applied to extract the mussel and large yellow croaker aquaculture areas in coastal waters around the world.展开更多
In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are susta...In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are sustainable.This study employed Biolog-Eco surveys to investigate the changes in vegetation characteristics,soil physicochemical properties,and soil microbial functional diversity in degraded alpine wetlands of the source region of the Yellow River at 3 and 15 months after the application of nitrogen,phosphorus,and organic mixed fertilizer.The following results were obtained:The addition of nitrogen fertilizer and organic compost significantly affects the soil organic carbon content in degraded wetlands.Three months after fertilization,nitrogen addition increases soil organic carbon in both lightly and severely degraded wetlands,whereas after 15 months,organic compost enhanced the soil organic carbon level in severely degraded wetlands.Structural equation modeling indicates that fertilization decreases the soil pH and directly or indirectly influences the soil organic carbon levels through variations in the soil water content and the aboveground biomass of vegetation.Three months after fertilization,nitrogen fertilizer showed a direct positive effect on soil organic carbon.However,organic mixed fertilizer indirectly reduced soil organic carbon by increasing biomass and decreasing soil moisture.After 15 months,none of the fertilizers significantly affected the soil organic carbon level.In summary,it can be inferred that the addition of nitrogen fertilizer lacks sustainability in positively influencing the organic carbon content.展开更多
基金supported by the earmarked fund for CARS(Grant No.CARS-24-A05)。
文摘Leaf color is directly related to altered photosynthesis.Hence,leaf yellowing mutants can be widely used for the researching plant physiology and functional genomes,for cultivating new varieties of popular horticultural plants,and for identifying hybrid purity(as markers).Here,we constructed a^(60)Co-γF_(2)population from the leaf-yellowing mutant R24 via radiation mutation with the inbred line WT21 of pepper.Genetic analysis showed that the leaf-yellowing of the mutant was controlled by a single recessive gene.By applying the Bulk Segregation Analysis and Kompetitive Allele Specific PCR markers,the leaf-yellowing gene CaLY1(Capsicum annuum Leaf yellow 1)was mapped on chromosome 9,SNP5791587-SNP6011215,with a size of 214.5 kb.One non-synonymous mutated gene Capana09g000166 was found in the interval.The gene encoded a Psb X,which is the core complex of PSⅡ.Transcriptome analysis further showed that 2301 differentially expressed genes were identified under shading treatment for 24 h in R24.The Gene Ontology enrichment pathways were related to photosynthesis light harvesting,cell wall,activity of quercetin 3-O-glucosyltransferase and flavonoid metabolic process,which likely regulate the response of pepper leaves to different light levels.Functional enrichment analysis indicated that the most abundant pathways were photosynthesis antenna proteins and metabolic.
基金This research was funded by the Special Project of Biological Seed Industry and Fine and Deep Processing of Agricultural Products(grant 202202AE090031)the Project of Education Department of Hunan Province(grant 22B0229)the Key Research and Development Program of Hainan Province(grant ZD2020060).
文摘Light quality and intensity can have a significant impact on plant health and crop productivity.Chlorophylls and carotenoids are classes of plant pigments that are responsible for harvesting light energy and protecting plants from the damaging effects of intense light.Our understanding of the role played by plant pigments in light sensitivity has been aided by light-sensitive mutants that change colors upon exposure to light of variable intensity.In this study,we conducted transcriptomic,metabolomic,and hormone analyses on a novel yellowing mutant of pepper(yl1)to shed light on the molecular mechanism that regulates the transition from green to yellow leaves in this mutant upon exposure to high-intensity light.Our results revealed greater accumulation of the carotenoid precursor phytoene and the carotenoids phytofluene,antheraxanthin,and zeaxanthin in yl1 compared with wild-type plants under high light intensity.A transcriptomic analysis confirmed that enzymes involved in zeaxanthin and antheraxanthin biosynthesis were upregulated in yl1 upon exposure to high-intensity light.We also identified a single basic helix–loop–helix(bHLH)transcription factor,bHLH71-like,that was differentially expressed and positively correlated with light intensity in yl1.Silencing of bHLH71-like in pepper plants suppressed the yellowing phenotype and led to reduced accumulation of zeaxanthin and antheraxanthin.We propose that the yellow phenotype of yl1 induced by high light intensity could be caused by an increase in yellow carotenoid pigments,concurrent with a decrease in chlorophyll accumulation.Our results also suggest that bHLH71-like functions as a positive regulator of carotenoid biosynthesis in pepper.
基金supported by research grants from Regionalt Forskningsfond (RFF) Trondelag (In FeedProject number: 309859),where Nord University is the project leading institution,and Gullimunn AS and Mære Landbruksskole are project partnerssupported by the CEER project (Project number: 2021/10345) funded by the Norwegian Agency for International Cooperation and Quality Enhancement in Higher Education (HK-dir) under the Norwegian Partnership Program for Global Academic Cooperation (NORPART ) with support from the Norwegian Ministry of Education and Research (MER)。
文摘Yellow mealworm larvae(YML;Tenebrio molitor) are considered as a valuable insect species for animal feed due to their high nutritional values and ability to grow under different substrates and rearing conditions. Advances in the understanding of entomophagy and animal nutrition over the past decades have propelled research areas toward testing multiple aspects of YML to exploit them better as animal feed sources. This review aims to summarize various approaches that could be exploited to maximize the nutritional values of YML as an animal feed ingredient. In addition, YML has the potential to be used as an antimicrobial or bioactive agent to improve animal health and immune function in production animals. The dynamics of the nutritional profile of YML can be influenced by multiple factors and should be taken into account when attempting to optimize the nutrient contents of YML as an animal feed ingredient. Specifically, the use of novel land-based and aquatic feeding resources, probiotics, and the exploitation of larval gut microbiomes as novel strategies can assist to maximize the nutritional potential of YML. Selection of relevant feed supplies, optimization of ambient conditions, the introduction of novel genetic selection procedures, and implementation of effective post-harvest processing may be required in the future to commercialize mealworm production. Furthermore, the use of appropriate agricultural practices and technological improvements within the mealworm production sector should be aimed at achieving both economic and environmental sustainability. The issues highlighted in this review could pave the way for future approaches to improve the nutritional value of YML.
基金Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20210527National Natural Science Foundation of China,Grant/Award Number:42107158Training Program for Innovation and Entrepreneurship,China University of Mining and Technology。
文摘In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical properties of silt and sand from the Yellow Sea were measured using a direct shear apparatus and their microstructures were observed using a scanning electron microscope.The test results suggest that the shear strength of silt and sand increases linearly with the increase of normal stress.Based on the direct shear test,the scanning electron microscope was used to observe the section surface of sand.It is observed that the section surface becomes rough,with many“V”‐shaped cracks.Many particles appear on the surface of the silt structure and tend to be disintegrated.The X‐ray diffraction experiment reveals that the sand and silt have different compositions.The shear strength of sand is slightly greater than that of silt under high stress,which is related to the shape of soil particles and the mineral composition.These results can be a reference for further study of other soils in the Yellow Sea;meanwhile,they can serve as soil parameters for the stability and durability analyses of offshore infrastructure construction.
文摘Osteosarcoma is a very serious primary bone cancer with a high death rate and a dismal prognosis.Since there is no permanent therapy for this condition,it is necessary to develop a cure.Therefore,this investigation was carried out to assess the impacts and biological functions of hydroxysafflor yellow A(HYSA)in osteosarcoma cell lines(MG63).In this investigational study,MG63 cells were utilized.Microarray experiments,quantitative polymerase chain reaction(qPCR),immunofluorescent staining,extracellular acidification rate(ECAR),oxygen consumption rate(OCR),glucose consumption,lactate production,and ATP levels,proliferation assay,5-Ethynyl-2′-deoxyuridine(EDU)staining,and Western blot were performed.In MG63 cells,HYSA lowered cell proliferation and metastasis rates,suppressed EDU cell number,and enhanced caspase-3/9 activity levels.HYSA reduced the Warburg effect and induced ferroptosis(FPT)in MG63 cells.Inhibiting ferroptosis diminished HYSA’s anti-cancer activities in MG63 cells.The stimulation of the HIF-1α/SLC7A11 pathway decreased HYSA’s anti-cancer activities in MG63 cells.HIF-1αis one target spot for HYSA in a model of osteosarcoma cancer(OC).HYSA altered HIF-1α’s thermophoretic activity;following binding with HYSA,HIF-1α’s melting point increased from~55°C to~60°C.HYSA significantly enhanced the thermal stability of exogenous WT HIF-1αwhile not affecting Mut HIF-1α,suggesting that ARG-311,GLY-312,GLN-347,and GLN-387 may be involved in the interaction between HIF-1αand HYSA.Conclusively,our study revealed that HYSA induced FPT and reduced the Warburg effect of OC through mitochondrial damage by HIF-1α/HK2/SLC7A11 pathway.HYSA is a possible therapeutic option for OC or other cancers.
基金supported by the the“JBGS”Project of Seed Industry Revitalization in Jiangsu Province,China(JBGS[2021]018)the Jiangsu Agricultural Innovation of New Cultivars,China(PZCZ201720)the Open Project Program of Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement,China(K2020030)。
文摘Leaf color mutants in higher plants are considered to be ideal materials for studying the chlorophyll biosynthesis,photosynthesis mechanism and chloroplast development.Herein,we identified a spontaneous mutant,yc412,in cultivated cucumber that exhibited yellow cotyledons.The yellow-lethal mutant was diagnosed with an abnormal chloroplast ultrastructure,and reduced photosynthetic capacity and pigment content.Through bulked segregant analysis-based whole-genome sequencing and fine genetic mapping,we narrowed the yellow cotyledons (yc) locus to a 96.8 kb interval on chromosome 3.By resequencing and molecular cloning,we showed that Csyc is a potential candidate gene,which encodes a yellow stripe-like (YSL) transporter.The T to C mutation in the promoter region of Csyc caused the yellow cotyledon phenotype in yc412.Compared to YZU027A (WT),the expression of Csyc was significantly downregulated in the cotyledons of yc412.Silencing of Csyc in cucumber via virus-induced gene silencing resulted in chlorotic leaves,mainly by suppressing the chlorophyll content.Furthermore,a comparative transcriptome analysis revealed that chloroplast-related genes and chlorophyll biosynthesis genes were significantly downregulated in yc412 cotyledons.Our results provide new insights into the molecular function of the YSL transporter in plant chloroplast development and chlorophyll synthesis.
基金the International Science Partnership Program of the Chinese Academy of Sciences(No.133137KYSB20200002)the Laoshan Laboratory(No.LSKJ202204005)+3 种基金the State Key Program of National Natural Science of China(No.42130411)the International Science Partnership Program of the Chinese Academy of Sciences(No.121311KYSB20190029)the Aoshan Science and Technology Innovation Program(No.2016ASKJ02-4)the Taishan Scholars Project(to Song SUN)。
文摘The Yellow Sea(YS)and East China Sea(ECS)are highly dynamic marginal seas of the northwestern Pacific Ocean.To gain an in-depth understanding of zooplankton community structure,zooplankton abundance,biovolume,and size structure in summer 2017 in the YS and ECS were assessed using ZooScan imaging analysis.Zooplankton abundance and biovolume ranged 2.94–1187.14 inds./m^(3)and 3.13–3438.51 mm^(3)/m^(3),respectively.Based on the biovolume data of the categorized size classes of 26 identified taxonomic groups,the zooplankton community was classified into five groups,and each group was coupled with distinctive oceanographic features.Under the influence of the Yellow Sea Cold Water Mass,the Yellow Sea offshore group featured the lowest bottom temperature(10.84±3.42℃)and the most abundant Calanoids(mainly in the 2–3 mm size class).In the Yellow Sea inshore group,Hydrozoans showed the largest biovolume and dominated in the 3–4-mm and>5-mm size classes.The East China Sea offshore group,which was affected by the Kuroshio Branch Current,featured high temperature and salinity,and the lowest bottom dissolved oxygen(2.58±0.5 mg/L).The lowest values of zooplankton abundance and biovolume in the East China Sea offshore group might be attributed to the bottom dissolved oxygen contents.The East China Sea inshore group,which was mainly influenced by the Zhejiang-Fujian Coastal Current and Changjiang Diluted Water,was characterized by high chlorophyll a and the largest biovolume of carnivorous Siphonophores(280.82±303.37 mm^(3)/m^(3)).The Changjiang River estuary offshore group showed the most abundant Cyclopoids,which might be associated with the less turbid water mass in this region.Seawater temperature was considered the most important factor in shaping the size compositions of Calanoids in different groups.
基金supported by the National Natural Science Foundation of China(31971980,U19A2029)The science and technology innovation Program of Hunan Province,China(2023RC1077)+1 种基金the Agricultural Science and Technology Innovation Foundation of Hunan,China(2022CX55)the Scientific Research Fund of Hunan Provincial Science and Technology Department,China(2021JC0007)。
文摘The yellow seed trait is preferred by breeders for its potential to improve the seed quality and commercial value of Brassica napus.In the present study,we produced yellow seed mutants using a CRISPR/Cas9 system when the two BnPAP2 homologs were knocked out.Histochemical staining of the seed coat demonstrated that proanthocyanidin accumulation was significantly reduced in the pap2 double mutants and decreased specifically in the endothelial and palisade layer cells of the seed coat.Transcriptomic and metabolite profiling analysis suggested that disruption of the BnPAP2 genes could reduce the expression of structural and regulated genes in the phenylpropanoid and flavonoid biosynthetic pathways.The broad suppression of these genes might hinder proanthocyanidin accumulation during seed development,and thereby causing the yellow seed trait in B.napus.These results indicate that BnPAP2 might play a vital role in the regulatory network controlling proanthocyanidin accumulation.
文摘Objective:To determine the protective effect of co-enzyme Q10(CoQ10)on testicular tissue and sperm parameters in male rats treated with SunsetYellow FCF.Methods:Sixty male Sprague-Dawley rats were randomly divided into 6 groups of the control,CoQ10(10 mg/kg/day),low dose of Sunset Yellow(2.5 mg/kg),high dose of Sunset Yellow(70 mg/kg),low dose of Sunset Yellow(2.5 mg/kg)plus CoQ10,and high dose of Sunset Yellow(70 mg/kg)plus CoQ10.The drugs were administered via daily oral gavages for 6 weeks.At the end of the experiment,sperm analysis,stereological and histological assessments of the testis were carried out.Results:The normal morphology(by 41.1%)and progressive spermatozoa(by 74.8%),testicle volume(by 33.4%),lumen volume(by 38.3%),interstitial tissue volume(by 44.7%),seminiferous tubule volume(by 40.7%),and number of spermatogonia(by 53.9%)and Leydig cells(by 70.7%)reduced in the rats that received high doses of Sunset Yellow in comparison to the control group.Nonetheless,all these alterations were recovered by CoQ10 treatment in the CoQ10 plus high dose of Sunset Yellow group.Furthermore,low doses of Sunset Yellow did not affect different parameters of the testis and sperm.Conclusions:CoQ10 could,to some extent,prevent structural changes of the testis induced by the high dose of SunsetYellow.
基金Supported by the National Key R&D Program of China(No.2022YFC3106005)the Shandong Provincial Natural Science Foundation(No.ZR2021MD122)+1 种基金the MNR Key Laboratory of Eco-Environmental Science and Technology,China(No.MEEST-2023-04)the Shandong Provincial Key Laboratory of Marine Ecological Environment and Disaster Prevention and Mitigation(No.201708)。
文摘In 2022,Yellow Sea green tide caused by Ulva prolifera reached a historic minimum and the coastal areas of Shandong Peninsula were less affected.However,the largest amount of seaweed biomass has been washed ashore on Lianyungang and Rizhao coasts since 2015.We studied the development pattern of Yellow Sea green tide in 2022,and analyzed the key environmental factors on the growth and drifting,then discussed the possible reasons that resulted in the massive stranding of green tide biomass in Lianyungang and Rizhao.Results show under the combined influence of the east to southeast winds and currents with shoreward anomalies,green tide drifted to the coastal waters between Shandong and Jiangsu provinces and the distribution areas located westward compared with previous years(2008–2021).Floating U.prolifera rafts from the coastal waters of Binhai and Sheyang drifted continuously into the coastal waters of Lianyungang and Rizhao,providing important supplements for Yellow Sea green tide.Because green tide in 2022 distributed close to the coastal waters,the abundant nutrients might support their continuous high growth rate.In addition,the amount of rainfall around Shandong Peninsula from late June to early July were significantly higher than in previous years,which might promote the development of green tide to some extent.
基金financially supported by the National Natural Science Foundation of China(Nos.U22A20580,42130410,and U1906210)the Fundamental Research Funds for the Central Universities(No.201962003).
文摘Natural radionuclides are powerful tools for understanding the sources and fate of suspended particulate matter(SPM).Particulate matter with different particle sizes behaves differently with respect to adsorption and desorption.We analyzed the activi-ties and distribution characteristics of multiple natural radionuclides(238U,226Ra,40K,228Ra,7Be and 210Pbex)on size-fractionated SPM at the Lijin Hydrographic Station(Huanghe or Yellow River)every month over a one-year period.Results showed that medium silt(16–32µm)was the main component.As expected,the activity of each radionuclide decreased with an increase of particle size.We examined the sources of SPM with different particle sizes using activity ratios of 226Ra/238U,228Ra/226Ra,40K/238U and 7Be/210Pbex,and concluded that SPM with different particle sizes originated from different sources.Our results indicate that fine SPM(<32µm)was mainly from the erosion of soil along the lower reaches of the Yellow River,while coarse SPM(>32µm)was mainly derived from resuspension of riverbed sediment.During high runoff periods,the concentration of SPM increased significantly,and the pro-portion of fine particles originating upstream increased.Naturally occurring radioactive isotopes,especially on size-fractionated par-ticles,are therefore seen as useful tracers to understand the sources and behaviors of riverine particles transported from land to sea.
文摘The study, conducted at the Research Farm of the College of Agriculture, University of Tabriz in 2021, focused on the effects of various nitrogen-fixing bacterial isolates, biofertilizers containing nitrogen and phosphorus, as well as iron and zinc foliar applications on mustard growth under rainfed conditions. The results indicated that biofertilizers, whether used alone or in combination with chemical fertilizers, produced comparable grain and oil outputs compared to chemical fertilizers alone. Additionally, the application of iron and zinc through foliar spraying significantly enhanced both grain and oil production. These findings suggest that integrating nitrogen-fixing bacteria and biofertilizers could reduce reliance on chemical nitrogenous fertilizers, leading to decreased production expenses, improved product quality, and minimized environmental impact. This study highlights the potential for sustainable agricultural practices in dry land farming as a viable alternative to traditional chemical-intensive methods. Substituting chemical nitrogenous fertilizers with nitrogen-fixing bacteria or biofertilizers could result in cost savings in mustard grain and oil production while promoting environmental sustainability.
基金China Postdoctoral Science Foundation,Grant/Award Number:2023M731999National Natural Science Foundation of China,Grant/Award Number:52301326。
文摘Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil around submarine pipelines is prone to local scour,severely affecting their operational safety.With the Yellow River Delta as the research area and based on the renormalized group(RNG)k-εturbulence model and Stokes fifth-order wave theory,this study solves the Navier-Stokes(N-S)equation using the finite difference method.The volume of fluid(VOF)method is used to describe the fluid-free surface,and a threedimensional numerical model of currents and waves-submarine pipeline-silty sandy seabed is established.The rationality of the numerical model is verified using a self-built waveflow flume.On this basis,in this study,the local scour development and characteristics of submarine pipelines in the Yellow River Delta silty sandy seabed in the prototype environment are explored and the influence of the presence of pipelines on hydrodynamic features such as surrounding flow field,shear stress,and turbulence intensity is analyzed.The results indicate that(1)local scour around submarine pipelines can be divided into three stages:rapid scour,slow scour,and stable scour.The maximum scour depth occurs directly below the pipeline,and the shape of the scour pits is asymmetric.(2)As the water depth decreases and the pipeline suspension height increases,the scour becomes more intense.(3)When currents go through a pipeline,a clear stagnation point is formed in front of the pipeline,and the flow velocity is positively correlated with the depth of scour.This study can provide a valuable reference for the protection of submarine pipelines in this area.
基金supported by the China Agriculture Research System of MOF and MARA(CARS26-05B)the Innovation Research 2035 Pilot Plan of Southwest University,China(SWU-XDPY22002)+1 种基金the Guangxi Science and Technology Planed Project,China(Gui Ke AD23026090)the Guangxi Natural Science Foundation,China(2023GXNSFBA026285).
文摘Citrus yellow vein clearing virus(CYVCV)is a new citrus virus that has become an important factor restricting the development of China’s citrus industry,and the CYVCV coat protein(CP)is associated with viral pathogenicity.In this study,the Eureka lemon zinc finger protein(ZFP)ClDOF3.4 was shown to interact with CYVCV CP in vivo and in vitro.Transient expression of ClDOF3.4 in Eureka lemon induced the expression of salicylic acid(SA)-related and hypersensitive response marker genes,and triggered a reactive oxygen species burst,ion leakage necrosis,and the accumulation of free SA.Furthermore,the CYVCV titer in ClDOF3.4 transgenic Eureka lemon plants was approximately 69.4%that in control plants 6 mon after inoculation,with only mild leaf chlorotic spots observed in those transgenic plants.Taken together,the results indicate that ClDOF3.4 not only interacts with CP but also induces an immune response in Eureka lemon by inducing the SA pathways.This is the first report that ZFP is involved in the immune response of a citrus viral disease,which provides a basis for further study of the molecular mechanism of CYVCV infection.
基金co-funded by the National Natural Science Foundation of China(U204020742277323)+2 种基金the 111 Project of Hubei Province(2021EJD026)the open fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University)Ministry of Education(2022KDZ24).
文摘Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was conducted to explore the effect of external environment(wetting-drying cycles and acidic conditions)on the soil aggregate distribution and stability and identify the key soil physicochemical factors that affect the soil aggregate stability.The yellow‒brown soil from the Three Gorges Reservoir area(TGRA)was used,and 8 wetting-drying conditions(0,1,2,3,4,5,10 and 15 cycles)were simulated under 4 acidic conditions(pH=3,4,5 and 7).The particle size distribution and soil aggregate stability were determined by wet sieving method,the contribution of environmental factors(acid condition,wetting-drying cycle and their combined action)to the soil aggregate stability was clarified and the key soil physicochemical factors that affect the soil aggregate stability under wetting-drying cycles and acidic conditions were determined by using the Pearson’s correlation analysis,Partial least squares path modeling(PLS‒PM)and multiple linear regression analysis.The results indicate that wetting-drying cycles and acidic conditions have significant effects on the stability of soil aggregates,the soil aggregate stability gradually decreases with increasing number of wetting-drying cycles and it obviously decreases with the increase of acidity.Moreover,the combination of wetting-drying cycles and acidic conditions aggravate the reduction in the soil aggregate stability.The wetting-drying cycles,acidic conditions and their combined effect imposes significant impact on the soil aggregate stability,and the wetting-drying cycles exert the greatest influence.The soil aggregate stability is significantly correlated with the pH,Ca^(2+),Mg^(2+),maximum disintegration index(MDI)and soil bulk density(SBD).The PLS‒PM and multiple linear regression analysis further reveal that the soil aggregate stability is primarily influenced by SBD,Ca^(2+),and MDI.These results offer a scientific basis for understanding the soil aggregate breakdown mechanism and are helpful for clarifying the coupled effect of wetting-drying cycles and acid rain on terrestrial ecosystems in the TGRA.
基金supported by the Basic Research Project of Key Scientific Research Projects of Colleges and Universities of Henan Province,China(23ZX012).
文摘Analysing runoff changes and how these are affected by climate change and human activities is deemed crucial to elucidate the ecological and hydrological response mechanisms of rivers.The Indicators of Hydrologic Alteration and the Range of Variability Approach(IHA-RVA)method,as well as the ecological indicator method,were employed to quantitatively assess the degree of hydrologic change and ecological response processes in the Yellow River Basin from 1960 to 2020.Using Budyko's water heat coupling balance theory,the relative contributions of various driving factors(such as precipitation,potential evapotranspiration,and underlying surface)to runoff changes in the Yellow River Basin were quantitatively evaluated.The results show that the annual average runoff and precipitation in the Yellow River Basin had a downwards trend,whereas the potential evapotranspiration exhibited an upwards trend from 1960 to 2020.In approximately 1985,it was reported that the hydrological regime of the main stream underwent an abrupt change.The degree of hydrological change was observed to gradually increase from upstream to downstream,with a range of 34.00%-54.00%,all of which are moderate changes.However,significant differences have been noted among different ecological indicators,with a fluctuation index of 90.00%at the outlet of downstream hydrological stations,reaching a high level of change.After the mutation,the biodiversity index of flow in the middle and lower reaches of the Yellow River was generally lower than that in the base period.The research results also indicate that the driving factor for runoff changes in the upper reach of the Yellow River Basin is mainly precipitation,with a contribution rate of 39.31%-54.70%.Moreover,the driving factor for runoff changes in the middle and lower reaches is mainly human activities,having a contribution rate of 63.70%-84.37%.These results can serve as a basis to strengthen the protection and restoration efforts in the Yellow River Basin and further promote the rational development and use of water resources in the Yellow River.
文摘Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada, during 2019, the National Collision Database shows that 28% of traffic fatalities and 42% of serious injuries occurred at intersections. Likewise, the U.S. National Highway Traffic Administration (NHTSA) found that about 40% of the estimated 5,811,000 accidents in the U.S. during the year studied were intersection-related crashes. In fact, a major survey by the car insurance industry found that nearly 85% of drivers could not identify the correct action to take when approaching a yellow traffic light at an intersection. One major reason for these accidents is the “yellow light dilemma,” the ambiguous situation where a driver should stop or proceed forward when unexpectedly faced with a yellow light. This situation is even further exacerbated by the tendency of aggressive drivers to inappropriately speed up on the yellow just to get through the traffic light. A survey of Canadian drivers conducted by the Traffic Injury Research Foundation found that 9% of drivers admitted to speeding up to get through a traffic light. Another reason for these accidents is the increased danger of making a left-hand turn on yellow. According to the National Highway Traffic Safety Association (NHTSA), left turns occur in approximately 22.2% of collisions—as opposed to just 1.2% for right turns. Moreover, a study by CNN found left turns are three times as likely to kill pedestrians than right turns. The reason left turns are so much more likely to cause an accident is because they take a driver against traffic and in the path of oncoming cars. Additionally, most of these left turns occur at the driver’s discretion—as opposed to the distressingly brief left-hand arrow at busy intersections. Drive Safe Now proposes a workable solution for reducing the number of accidents occurring during a yellow light at intersections. We believe this fairly simple solution will save lives, prevent injuries, reduce damage to public and private property, and decrease insurance costs.
基金Under the auscpices of Shandong Provincial Natural Science Foundation (No.ZR2020QD090)Research Funds of Beijing VMinFull Limted (No.VMF2021RS)+1 种基金National Natural Science Foundation of China (No.42176221)Seed Project of Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences (No.YICE351030601)。
文摘With the loss of substantial natural wetlands in coastal zones,artificial wetlands provide alternative habitats for many shorebirds.Scientific management of artificial wetlands used by shorebirds plays an important role in maintaining the stability of shorebird population.Satellite tracking technique can obtain high-precision location information of individuals day and night,providing a good technical support for the study of quantitative relationship between waterfowls and their habitats.In this study,satellite tracking method,Remote Sensing(RS)and Geographic Information System(GIS)technology were used to analyze the activity pattern and habitat utilization characteristics of Pied Avocet during breeding period in an artificial wetland complex in the Yellow River Delta(YRD),China.The results showed that the breeding Pied Avocets had a small range of activity,with a total core and main home range of 33.10 km^(2) and 216.30 km^(2),respectively.This species tended to forage in the pond and salt pan during the day and night,respectively,with an unfixed staying time in the breeding ground.The distance between breeding ground and feeding ground was less than 6 km.It is emphasized that in addition to improving the conditions of the remaining natural habitats,effective managing artificial habitats is a priority for shorebird conservation.This research could provide reference for the management of artificial wetlands in coastal zones and supply technique support for the protection of shorebirds and their habitats,and alleviate human-bird conflicts and sustainable development of coastal zones.
基金The National Key Research and Development Program of China under contract Nos 2023YFD2401900 and 2020YFD09008004the National Natural Science Foundation of China Key International(Regional)Cooperative Research Project under contract No.42020104009the Basic Public Welfare Research Program of Zhejiang Province under contract No.LGF21D010004.
文摘Mussel aquaculture and large yellow croaker aquaculture areas and their environmental characteristics in Zhoushan were analyzed using satellite data and in-situ surveys.A new two-step remote sensing method was proposed and applied to determine the basic environmental characteristics of the best mussel and large yellow croaker aquaculture areas.This methodology includes the first step of extraction of the location distribution and the second step of the extraction of internal environmental factors.The fishery ranching index(FRI1,FRI2)was established to extract the mussel and the large yellow croaker aquaculture area in Zhoushan,using Gaofen-1(GF-1)and Gaofen-6(GF-6)satellite data with a special resolution of 2 m.In the second step,the environmental factors such as sea surface temperature(SST),chlorophyll a(Chl-a)concentration,current and tide,suspended sediment concentration(SSC)in mussel aquaculture area and large yellow croaker aquaculture area were extracted and analyzed in detail.The results show the following three points.(1)For the extraction of the mussel aquaculture area,FRI1 and FRI2 are complementary,and the combination of FRI1 and FRI2 is suitable to extract the mussel aquaculture area.As for the large yellow croaker aquaculture area extraction,FRI2 is suitable.(2)Mussel aquaculture and the large yellow croaker aquaculture area in Zhoushan are mainly located on the side near the islands that are away from the eastern open waters.The water environment factor template suitable for mussel and large yellow croaker aquaculture was determined.(3)This two-step remote sensing method can be used for the preliminary screening of potential site selection for the mussels and large yellow croaker aquaculture area in the future.the fishery ranching index(FRI1,FRI2)in this paper can be applied to extract the mussel and large yellow croaker aquaculture areas in coastal waters around the world.
基金supported by the National Nature Science Foundations of China(32160269)the International Science and Technology Cooperation Project of Qinghai province of China(2022-HZ-817).
文摘In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are sustainable.This study employed Biolog-Eco surveys to investigate the changes in vegetation characteristics,soil physicochemical properties,and soil microbial functional diversity in degraded alpine wetlands of the source region of the Yellow River at 3 and 15 months after the application of nitrogen,phosphorus,and organic mixed fertilizer.The following results were obtained:The addition of nitrogen fertilizer and organic compost significantly affects the soil organic carbon content in degraded wetlands.Three months after fertilization,nitrogen addition increases soil organic carbon in both lightly and severely degraded wetlands,whereas after 15 months,organic compost enhanced the soil organic carbon level in severely degraded wetlands.Structural equation modeling indicates that fertilization decreases the soil pH and directly or indirectly influences the soil organic carbon levels through variations in the soil water content and the aboveground biomass of vegetation.Three months after fertilization,nitrogen fertilizer showed a direct positive effect on soil organic carbon.However,organic mixed fertilizer indirectly reduced soil organic carbon by increasing biomass and decreasing soil moisture.After 15 months,none of the fertilizers significantly affected the soil organic carbon level.In summary,it can be inferred that the addition of nitrogen fertilizer lacks sustainability in positively influencing the organic carbon content.