This paper is aimed at the distributed fault estimation issue associated with the potential loss of actuator efficiency for a type of discrete-time nonlinear systems with sensor saturation.For the distributed estimati...This paper is aimed at the distributed fault estimation issue associated with the potential loss of actuator efficiency for a type of discrete-time nonlinear systems with sensor saturation.For the distributed estimation structure under consideration,an estimation center is not necessary,and the estimator derives its information from itself and neighboring nodes,which fuses the state vector and the measurement vector.In an effort to cut down data conflicts in communication networks,the stochastic communication protocol(SCP)is employed so that the output signals from sensors can be selected.Additionally,a recursive security estimator scheme is created since attackers randomly inject malicious signals into the selected data.On this basis,sufficient conditions for a fault estimator with less conservatism are presented which ensure an upper bound of the estimation error covariance and the mean-square exponential boundedness of the estimating error.Finally,a numerical example is used to show the reliability and effectiveness of the considered distributed estimation algorithm.展开更多
Most of the public key algorithms used in the exchange of information for power data transmission protocols are RSA. The core of the key part of this kind of algorithm system has not been announced. For the domestic s...Most of the public key algorithms used in the exchange of information for power data transmission protocols are RSA. The core of the key part of this kind of algorithm system has not been announced. For the domestic sensitive information data field, there are threats such as preset backdoors and security vulnerabilities. In response to the above problems, the article introduces a secure communication protocol based on the optimized Secret SM2 algorithm, which uses socket programming to achieve two-way encrypted communication between clients and services, and is able to complete the security protection of data encryption transmission, authentication, data tampering, etc., and proves through experiments that the security protocol is more secure than traditional methods, can effectively identify each other, carry out stable and controllable data encryption transmission, and has good applicability.展开更多
In this paper,an adaptive dynamic programming(ADP)strategy is investigated for discrete-time nonlinear systems with unknown nonlinear dynamics subject to input saturation.To save the communication resources between th...In this paper,an adaptive dynamic programming(ADP)strategy is investigated for discrete-time nonlinear systems with unknown nonlinear dynamics subject to input saturation.To save the communication resources between the controller and the actuators,stochastic communication protocols(SCPs)are adopted to schedule the control signal,and therefore the closed-loop system is essentially a protocol-induced switching system.A neural network(NN)-based identifier with a robust term is exploited for approximating the unknown nonlinear system,and a set of switch-based updating rules with an additional tunable parameter of NN weights are developed with the help of the gradient descent.By virtue of a novel Lyapunov function,a sufficient condition is proposed to achieve the stability of both system identification errors and the update dynamics of NN weights.Then,a value iterative ADP algorithm in an offline way is proposed to solve the optimal control of protocol-induced switching systems with saturation constraints,and the convergence is profoundly discussed in light of mathematical induction.Furthermore,an actor-critic NN scheme is developed to approximate the control law and the proposed performance index function in the framework of ADP,and the stability of the closed-loop system is analyzed in view of the Lyapunov theory.Finally,the numerical simulation results are presented to demonstrate the effectiveness of the proposed control scheme.展开更多
In this paper,a new filtering fusion problem is studied for nonlinear cyber-physical systems under errorvariance constraints and denial-of-service attacks.To prevent data collision and reduce communication cost,the st...In this paper,a new filtering fusion problem is studied for nonlinear cyber-physical systems under errorvariance constraints and denial-of-service attacks.To prevent data collision and reduce communication cost,the stochastic communication protocol is adopted in the sensor-to-filter channels to regulate the transmission order of sensors.Each sensor is allowed to enter the network according to the transmission priority decided by a set of independent and identicallydistributed random variables.From the defenders’view,the occurrence of the denial-of-service attack is governed by the randomly Bernoulli-distributed sequence.At the local filtering stage,a set of variance-constrained local filters are designed where the upper bounds(on the filtering error covariances)are first acquired and later minimized by appropriately designing filter parameters.At the fusion stage,all local estimates and error covariances are combined to develop a variance-constrained fusion estimator under the federated fusion rule.Furthermore,the performance of the fusion estimator is examined by studying the boundedness of the fused error covariance.A simulation example is finally presented to demonstrate the effectiveness of the proposed fusion estimator.展开更多
基金supported in part by the National Natural Science Foundation of China(62073189,62173207)the Taishan Scholar Project of Shandong Province(tsqn202211129)。
文摘This paper is aimed at the distributed fault estimation issue associated with the potential loss of actuator efficiency for a type of discrete-time nonlinear systems with sensor saturation.For the distributed estimation structure under consideration,an estimation center is not necessary,and the estimator derives its information from itself and neighboring nodes,which fuses the state vector and the measurement vector.In an effort to cut down data conflicts in communication networks,the stochastic communication protocol(SCP)is employed so that the output signals from sensors can be selected.Additionally,a recursive security estimator scheme is created since attackers randomly inject malicious signals into the selected data.On this basis,sufficient conditions for a fault estimator with less conservatism are presented which ensure an upper bound of the estimation error covariance and the mean-square exponential boundedness of the estimating error.Finally,a numerical example is used to show the reliability and effectiveness of the considered distributed estimation algorithm.
文摘Most of the public key algorithms used in the exchange of information for power data transmission protocols are RSA. The core of the key part of this kind of algorithm system has not been announced. For the domestic sensitive information data field, there are threats such as preset backdoors and security vulnerabilities. In response to the above problems, the article introduces a secure communication protocol based on the optimized Secret SM2 algorithm, which uses socket programming to achieve two-way encrypted communication between clients and services, and is able to complete the security protection of data encryption transmission, authentication, data tampering, etc., and proves through experiments that the security protocol is more secure than traditional methods, can effectively identify each other, carry out stable and controllable data encryption transmission, and has good applicability.
基金supported in part by the Australian Research Council Discovery Early Career Researcher Award(DE200101128)Australian Research Council(DP190101557)。
文摘In this paper,an adaptive dynamic programming(ADP)strategy is investigated for discrete-time nonlinear systems with unknown nonlinear dynamics subject to input saturation.To save the communication resources between the controller and the actuators,stochastic communication protocols(SCPs)are adopted to schedule the control signal,and therefore the closed-loop system is essentially a protocol-induced switching system.A neural network(NN)-based identifier with a robust term is exploited for approximating the unknown nonlinear system,and a set of switch-based updating rules with an additional tunable parameter of NN weights are developed with the help of the gradient descent.By virtue of a novel Lyapunov function,a sufficient condition is proposed to achieve the stability of both system identification errors and the update dynamics of NN weights.Then,a value iterative ADP algorithm in an offline way is proposed to solve the optimal control of protocol-induced switching systems with saturation constraints,and the convergence is profoundly discussed in light of mathematical induction.Furthermore,an actor-critic NN scheme is developed to approximate the control law and the proposed performance index function in the framework of ADP,and the stability of the closed-loop system is analyzed in view of the Lyapunov theory.Finally,the numerical simulation results are presented to demonstrate the effectiveness of the proposed control scheme.
基金supported in part by the National Natural Science Foundation of China(62173068,61803074,61703245,61973102,U2030205,61903065,61671109,U1830207,U1830133)the China Postdoctoral Science Foundation(2018M643441,2017M623005)+1 种基金the Royal Society of UKthe Alexander von Humboldt Foundation of Germany。
文摘In this paper,a new filtering fusion problem is studied for nonlinear cyber-physical systems under errorvariance constraints and denial-of-service attacks.To prevent data collision and reduce communication cost,the stochastic communication protocol is adopted in the sensor-to-filter channels to regulate the transmission order of sensors.Each sensor is allowed to enter the network according to the transmission priority decided by a set of independent and identicallydistributed random variables.From the defenders’view,the occurrence of the denial-of-service attack is governed by the randomly Bernoulli-distributed sequence.At the local filtering stage,a set of variance-constrained local filters are designed where the upper bounds(on the filtering error covariances)are first acquired and later minimized by appropriately designing filter parameters.At the fusion stage,all local estimates and error covariances are combined to develop a variance-constrained fusion estimator under the federated fusion rule.Furthermore,the performance of the fusion estimator is examined by studying the boundedness of the fused error covariance.A simulation example is finally presented to demonstrate the effectiveness of the proposed fusion estimator.