We normalize data from 43 Chinese observatories and select data from ten Chinese observatories with most continuous records to assess the secular variations(SVs)and geomagnetic jerks by calculating the deviations betw...We normalize data from 43 Chinese observatories and select data from ten Chinese observatories with most continuous records to assess the secular variations(SVs)and geomagnetic jerks by calculating the deviations between annual observed and CHAOS-6 model monthly means.The variations in the north,east,and vertical eigendirections are studied by using the covariance matrix of the residuals,and we find that the vertical direction is strongly affected by magnetospheric ring currents.To obtain noise-free data,we rely on the covariance matrix of the residuals to remove the noise contributions from the largest eigenvalue or vectors owing to ring currents.Finally,we compare the data from the ten Chinese observatories to seven European observatories.Clearly,the covariance matrix method can simulate the SVs of Dst,the jerk of the northward component in 2014 and that of the eastward component in 2003.5 in China are highly agree with that of Vertically downward component in Europe,compare to CHAOS-6,covariance matrix method can show more details of SVs.展开更多
Earth’s magnetic field,which is generated in the liquid outer core through the dynamo action,undergoes changes on timescales of a few years to several million years,yet the underlying mechanisms responsible for the f...Earth’s magnetic field,which is generated in the liquid outer core through the dynamo action,undergoes changes on timescales of a few years to several million years,yet the underlying mechanisms responsible for the field variations remain to be elucidated.In this study,we apply a novel data analysis technique developed in fluid dynamics,namely the dynamic mode decomposition,to analyze the geomagnetic variations over the last two decades when continuous satellite observations are available.The dominant dynamic modes are extracted by solving an eigen-value problem,so one can identify modes with periods longer than the time span of data.Our analysis show that similar dynamic modes are extracted from the geomagnetic secular variation and secular acceleration,justifying the validity of applying the dynamic mode decomposition method to geomagnetic field.We reveal that the geomagnetic field variations are characterized by a global mode with period of 58 years,a localized mode with period of 16 years and an equatorially trapped mode with period of 8.5 years.These modes are possibly related to magnetohydrodynamic waves in the Earth’s outer core.展开更多
The secular variation in the global geomagnetic field was analyzed in terms of the annual differences in monthly means by using the hourly mean data from 18 foreign(outside China)observatories of the World Data Center...The secular variation in the global geomagnetic field was analyzed in terms of the annual differences in monthly means by using the hourly mean data from 18 foreign(outside China)observatories of the World Data Center(WDC)for Geomagnetism from January 2010 to January 2020 as well as 9 observatories in the Geomagnetic Network of China from January 2015 to April 2021.In addition,according to the correlation of noisy components from the observatories,a covariance matrix was constructed based on residuals between observations and the CHAOS-7.4 model to remove external contamination.Through a comparison before and after denoising,we found that the overall average standard deviations were reduced by 29.97%in China and by 41.4%outside China.Results showed the correlation coefficient between external noise(mainly the magnetosphere ring current)and the Dst index was 0.82,and the correlation coefficient between external noise and the Ring Current(RC)index reached 0.94.A geomagnetic jerk was globally discovered around 2018.0 on the geomagnetic eastward component Y.The jerk timing in China was around 2020.0,and the earliest one was in2018.75,whereas the timing outside China was around 2018.0,and the earliest one was in 2017.67.This 2-year lag may have been caused by the higher electrical conductivity of the deep mantle.After more data were added,this jerk event was found to occur in an orderly manner in the northern hemisphere as the longitude increased and the intensity gradually increased as well.The variations in location of the jerk center were analyzed according to the CHAOS-7.4 model.Results revealed six extreme points distributed nearby the equator.The strongest was near the equator,at 170°E,and the strength gradually decreased as it extended to the northern and southern hemispheres.Another extreme point with the opposite sign was located at the equator,at 20°W,in the south-central part of the Atlantic,and the strength gradually decreased as it extended into Europe.The covariance matrix method can be used to analyze data from the Macao Science Satellite-1 mission in the future,and this method is expected to play a positive role in modeling and separating the large-scale external field.展开更多
In general, China is short of water resources and some regions even experience a shortage of daily water supply. This could threaten the stability and economic development of the nation. A study on the water storage v...In general, China is short of water resources and some regions even experience a shortage of daily water supply. This could threaten the stability and economic development of the nation. A study on the water storage variations is especially important for the water management and storage prediction in three largest river basins of China, namely, Yangtze, Yellow, and Zhujiang, where the most dense population and leading economic regions are located. The satellite gravity mission GRACE (Gravity Recovery and Climate Experiment) provides an opportunity to macroseopically identify water (or mass) variations in the Earth's system with a spatial resolution of 300-400 km and a temporal resolution of about one month. We use the first release of the DEOS (Delft Institute of Earth Observation and Space Systems) Mass Transport (DMT-1) model based on GRACE data to analyze water storage changes in the three river basins. The DMT-1 model consists of monthly solutions, which are computed using an innovative methodology. The methodology includes, in particular, the application of a statistically optimal Wiener-type filter based on full varianee-covariance matrices of noise and signal. This results in particularly sharp mass variation maps. Taking one monthly solution as an example, we compare the results derived from the DMT-1 model with ones produced with the standard post-processing scheme based on a combination of the de-striping and Gaussian filtering. The comparison shows that the DMT-1 model outperforms the other models and is suitable for the analysis of the mass changes in river basins. A subset of the DMT-1 solutions in the interval between February 2003 and May 2008 is used to estimate the secular trends and seasonal variations for the three river basins. The estimated trends show that the water storage of the Yellow River basin does not have significant changes, while the Zhujiang and Yangtze river basins have a large and statistically significant water storage increase. The estimation of seasonal variations demonstrates that the water storage variations in Yangtze and Zhujiang river basins are almost in the same phase. The amplitude of variations in the Zhujiang River basin is larger than that in Yangtze. No clear annual variations are observed in the Yellow River basin. The observed water storage variations generally coincide with the observations and conclusions presented in the hydrological reports of the Chinese Ministry of Water Resources展开更多
It has been debated whether there was southward movement of the South China Block (SCB) during the Cretaceous. In this study, a paleomagnetic investigation was carried out on the Late Cretaceous volcanic rocks (-88...It has been debated whether there was southward movement of the South China Block (SCB) during the Cretaceous. In this study, a paleomagnetic investigation was carried out on the Late Cretaceous volcanic rocks (-88 Ma) of the Shimaoshan Group in Yongtai County, Fujian Province. Rock magnetic experiments showed that magnetite in pseudo-single-domain and multi-domain grain and hematite were predominant magnetic phases. Stepwise thermal demagnetization successfully isolated characteristic directional components at high-temperature interval (〉 500℃) from 383 specimens in 19 sites, which yielded a paleomagnetic pole for the studied section at 83.1°N, 152.6°E (N = 19, A95 = 3.9°), and the scatter SB = 9.0. The Fisher distri- bution of virtual geomagnetic poles (VGPs) and the consistence of S8 with the expected value at the 95% confidence level in- dicate that the yielded paleomagnetic pole is free of paleomagnetic secular variation influence. The new pole, which is well consistent with that from the Eurasian apparent polar wander path (APWP) curve, suggests no obvious southward movement of the sampling site during the Cretaceous.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41404053)Special Project for Meteo-Scientifi c Research in the Public Interest(No.GYHY201306073)
文摘We normalize data from 43 Chinese observatories and select data from ten Chinese observatories with most continuous records to assess the secular variations(SVs)and geomagnetic jerks by calculating the deviations between annual observed and CHAOS-6 model monthly means.The variations in the north,east,and vertical eigendirections are studied by using the covariance matrix of the residuals,and we find that the vertical direction is strongly affected by magnetospheric ring currents.To obtain noise-free data,we rely on the covariance matrix of the residuals to remove the noise contributions from the largest eigenvalue or vectors owing to ring currents.Finally,we compare the data from the ten Chinese observatories to seven European observatories.Clearly,the covariance matrix method can simulate the SVs of Dst,the jerk of the northward component in 2014 and that of the eastward component in 2003.5 in China are highly agree with that of Vertically downward component in Europe,compare to CHAOS-6,covariance matrix method can show more details of SVs.
基金supported by Macao Science and Technology Development Fund grant 0001/2019/A1Macao Foundation+1 种基金the preresearch Project on Civil Aerospace Technologies of CNSA(Grants No.D020303 and D020308)the National Natural Science Foundation of China(41904066,42142034)。
文摘Earth’s magnetic field,which is generated in the liquid outer core through the dynamo action,undergoes changes on timescales of a few years to several million years,yet the underlying mechanisms responsible for the field variations remain to be elucidated.In this study,we apply a novel data analysis technique developed in fluid dynamics,namely the dynamic mode decomposition,to analyze the geomagnetic variations over the last two decades when continuous satellite observations are available.The dominant dynamic modes are extracted by solving an eigen-value problem,so one can identify modes with periods longer than the time span of data.Our analysis show that similar dynamic modes are extracted from the geomagnetic secular variation and secular acceleration,justifying the validity of applying the dynamic mode decomposition method to geomagnetic field.We reveal that the geomagnetic field variations are characterized by a global mode with period of 58 years,a localized mode with period of 16 years and an equatorially trapped mode with period of 8.5 years.These modes are possibly related to magnetohydrodynamic waves in the Earth’s outer core.
基金the support of the National Natural Science Foundation of China(Nos.42030203,41974073,41404053)the Macao Foundation and the pre-research project of Civil Aerospace Technologies(Nos.D020308 and D020303)+3 种基金which is funded by the China National Space Administrationsupport from the opening fund of the State Key Laboratory of Lunar and Planetary Sciences(Macao University of Science and Technology,Macao Science and Technology Development Fund[FDCT]No.119/2017/A3)the Specialized Research Fund for State Key Laboratoriesthe NUIST-Uo R International Research Institute。
文摘The secular variation in the global geomagnetic field was analyzed in terms of the annual differences in monthly means by using the hourly mean data from 18 foreign(outside China)observatories of the World Data Center(WDC)for Geomagnetism from January 2010 to January 2020 as well as 9 observatories in the Geomagnetic Network of China from January 2015 to April 2021.In addition,according to the correlation of noisy components from the observatories,a covariance matrix was constructed based on residuals between observations and the CHAOS-7.4 model to remove external contamination.Through a comparison before and after denoising,we found that the overall average standard deviations were reduced by 29.97%in China and by 41.4%outside China.Results showed the correlation coefficient between external noise(mainly the magnetosphere ring current)and the Dst index was 0.82,and the correlation coefficient between external noise and the Ring Current(RC)index reached 0.94.A geomagnetic jerk was globally discovered around 2018.0 on the geomagnetic eastward component Y.The jerk timing in China was around 2020.0,and the earliest one was in2018.75,whereas the timing outside China was around 2018.0,and the earliest one was in 2017.67.This 2-year lag may have been caused by the higher electrical conductivity of the deep mantle.After more data were added,this jerk event was found to occur in an orderly manner in the northern hemisphere as the longitude increased and the intensity gradually increased as well.The variations in location of the jerk center were analyzed according to the CHAOS-7.4 model.Results revealed six extreme points distributed nearby the equator.The strongest was near the equator,at 170°E,and the strength gradually decreased as it extended to the northern and southern hemispheres.Another extreme point with the opposite sign was located at the equator,at 20°W,in the south-central part of the Atlantic,and the strength gradually decreased as it extended into Europe.The covariance matrix method can be used to analyze data from the Macao Science Satellite-1 mission in the future,and this method is expected to play a positive role in modeling and separating the large-scale external field.
基金supported by National Natural Science Foundation of China (Grant No. 40874004)National Basic Research Program of China (Grant No. 2009AA121401)the "111 Project" of China (Grant No. B07037)
文摘In general, China is short of water resources and some regions even experience a shortage of daily water supply. This could threaten the stability and economic development of the nation. A study on the water storage variations is especially important for the water management and storage prediction in three largest river basins of China, namely, Yangtze, Yellow, and Zhujiang, where the most dense population and leading economic regions are located. The satellite gravity mission GRACE (Gravity Recovery and Climate Experiment) provides an opportunity to macroseopically identify water (or mass) variations in the Earth's system with a spatial resolution of 300-400 km and a temporal resolution of about one month. We use the first release of the DEOS (Delft Institute of Earth Observation and Space Systems) Mass Transport (DMT-1) model based on GRACE data to analyze water storage changes in the three river basins. The DMT-1 model consists of monthly solutions, which are computed using an innovative methodology. The methodology includes, in particular, the application of a statistically optimal Wiener-type filter based on full varianee-covariance matrices of noise and signal. This results in particularly sharp mass variation maps. Taking one monthly solution as an example, we compare the results derived from the DMT-1 model with ones produced with the standard post-processing scheme based on a combination of the de-striping and Gaussian filtering. The comparison shows that the DMT-1 model outperforms the other models and is suitable for the analysis of the mass changes in river basins. A subset of the DMT-1 solutions in the interval between February 2003 and May 2008 is used to estimate the secular trends and seasonal variations for the three river basins. The estimated trends show that the water storage of the Yellow River basin does not have significant changes, while the Zhujiang and Yangtze river basins have a large and statistically significant water storage increase. The estimation of seasonal variations demonstrates that the water storage variations in Yangtze and Zhujiang river basins are almost in the same phase. The amplitude of variations in the Zhujiang River basin is larger than that in Yangtze. No clear annual variations are observed in the Yellow River basin. The observed water storage variations generally coincide with the observations and conclusions presented in the hydrological reports of the Chinese Ministry of Water Resources
基金supported by National Natural Science Foundation of China (Grant Nos. 40634024 and40821091)
文摘It has been debated whether there was southward movement of the South China Block (SCB) during the Cretaceous. In this study, a paleomagnetic investigation was carried out on the Late Cretaceous volcanic rocks (-88 Ma) of the Shimaoshan Group in Yongtai County, Fujian Province. Rock magnetic experiments showed that magnetite in pseudo-single-domain and multi-domain grain and hematite were predominant magnetic phases. Stepwise thermal demagnetization successfully isolated characteristic directional components at high-temperature interval (〉 500℃) from 383 specimens in 19 sites, which yielded a paleomagnetic pole for the studied section at 83.1°N, 152.6°E (N = 19, A95 = 3.9°), and the scatter SB = 9.0. The Fisher distri- bution of virtual geomagnetic poles (VGPs) and the consistence of S8 with the expected value at the 95% confidence level in- dicate that the yielded paleomagnetic pole is free of paleomagnetic secular variation influence. The new pole, which is well consistent with that from the Eurasian apparent polar wander path (APWP) curve, suggests no obvious southward movement of the sampling site during the Cretaceous.