The working of a Mobile Ad hoc NETwork(MANET)relies on the supportive cooperation among the network nodes.But due to its intrinsic features,a misbehaving node can easily lead to a routing disorder.This paper presents ...The working of a Mobile Ad hoc NETwork(MANET)relies on the supportive cooperation among the network nodes.But due to its intrinsic features,a misbehaving node can easily lead to a routing disorder.This paper presents two trust-based routing schemes,namely Trust-based Self-Detection Routing(TSDR)and Trust-based Cooperative Routing(TCOR)designed with an Ad hoc On-demand Distance Vector(AODV)protocol.The proposed work covers a wide range of security challenges,including malicious node identification and prevention,accurate trust quantification,secure trust data sharing,and trusted route maintenance.This brings a prominent solution for mitigating misbehaving nodes and establishing efficient communication in MANET.It is empirically validated based on a performance comparison with the current Evolutionary Self-Cooperative Trust(ESCT)scheme,Generalized Trust Model(GTM),and the conventional AODV protocol.The extensive simulations are conducted against three different varying network scenarios.The results affirm the improved values of eight popular performance metrics overcoming the existing routing schemes.Among the two proposed works,TCOR is more suitable for highly scalable networks;TSDR suits,however,the MANET application better with its small size.This work thus makes a significant contribution to the research community,in contrast to many previous works focusing solely on specific security aspects,and results in a trade-off in the expected values of evaluation parameters and asserts their efficiency.展开更多
We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reco...We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reconfigurable intelligent surfaces(RISs) help to secure the UAV-target communication and improve the energy efficiency of the UAV.We formulate an optimization problem to minimize the energy consumption of the UAV,subject to the mobility constraint of the UAV and that the achievable secrecy rate at the target is over a given threshold.We present an online planning method following the framework of model predictive control(MPC) to jointly optimize the motion of the UAV and the configurations of the RISs.The effectiveness of the proposed method is validated via computer simulations.展开更多
This work employs intelligent reflecting surface(IRS)to enhance secure and covert communication performance.We formulate an optimization problem to jointly design both the reflection beamformer at IRS and transmit pow...This work employs intelligent reflecting surface(IRS)to enhance secure and covert communication performance.We formulate an optimization problem to jointly design both the reflection beamformer at IRS and transmit power at transmitter Alice in order to optimize the achievable secrecy rate at Bob subject to a covertness constraint.We first develop a Dinkelbach-based algorithm to achieve an upper bound performance and a high-quality solution.For reducing the overhead and computational complexity of the Dinkelbach-based scheme,we further conceive a low-complexity algorithm in which analytical expression for the IRS reflection beamforming is derived at each iteration.Examination result shows that the devised low-complexity algorithm is able to achieve similar secrecy rate performance as the Dinkelbach-based algorithm.Our examination also shows that introducing an IRS into the considered system can significantly improve the secure and covert communication performance relative to the scheme without IRS.展开更多
In an era characterized by digital pervasiveness and rapidly expanding datasets,ensuring the integrity and reliability of information is paramount.As cyber threats evolve in complexity,traditional cryptographic method...In an era characterized by digital pervasiveness and rapidly expanding datasets,ensuring the integrity and reliability of information is paramount.As cyber threats evolve in complexity,traditional cryptographic methods face increasingly sophisticated challenges.This article initiates an exploration into these challenges,focusing on key exchanges(encompassing their variety and subtleties),scalability,and the time metrics associated with various cryptographic processes.We propose a novel cryptographic approach underpinned by theoretical frameworks and practical engineering.Central to this approach is a thorough analysis of the interplay between Confidentiality and Integrity,foundational pillars of information security.Our method employs a phased strategy,beginning with a detailed examination of traditional cryptographic processes,including Elliptic Curve Diffie-Hellman(ECDH)key exchanges.We also delve into encrypt/decrypt paradigms,signature generation modes,and the hashes used for Message Authentication Codes(MACs).Each process is rigorously evaluated for performance and reliability.To gain a comprehensive understanding,a meticulously designed simulation was conducted,revealing the strengths and potential improvement areas of various techniques.Notably,our cryptographic protocol achieved a confidentiality metric of 9.13 in comprehensive simulation runs,marking a significant advancement over existing methods.Furthermore,with integrity metrics at 9.35,the protocol’s resilience is further affirmed.These metrics,derived from stringent testing,underscore the protocol’s efficacy in enhancing data security.展开更多
Cascade index modulation(CIM) is a recently proposed improvement of orthogonal frequency division multiplexing with index modulation(OFDM-IM) and achieves better error performance.In CIM, at least two different IM ope...Cascade index modulation(CIM) is a recently proposed improvement of orthogonal frequency division multiplexing with index modulation(OFDM-IM) and achieves better error performance.In CIM, at least two different IM operations construct a super IM operation or achieve new functionality. First, we propose a OFDM with generalized CIM(OFDM-GCIM) scheme to achieve a joint IM of subcarrier selection and multiple-mode(MM)permutations by using a multilevel digital algorithm.Then, two schemes, called double CIM(D-CIM) and multiple-layer CIM(M-CIM), are proposed for secure communication, which combine new IM operation for disrupting the original order of bits and symbols with conventional OFDM-IM, to protect the legitimate users from eavesdropping in the wireless communications. A subcarrier-wise maximum likelihood(ML) detector and a low complexity log-likelihood ratio(LLR) detector are proposed for the legitimate users. A tight upper bound on the bit error rate(BER) of the proposed OFDM-GCIM, D-CIM and MCIM at the legitimate users are derived in closed form by employing the ML criteria detection. Computer simulations and numerical results show that the proposed OFDM-GCIM achieves superior error performance than OFDM-IM, and the error performance at the eavesdroppers demonstrates the security of D-CIM and M-CIM.展开更多
Reconfigurable intelligent surface(RIS)assisted dual-function radar communications(DFRC)system is a promising integrated sensing and communication(ISAC)technology for future 6G.In this paper,we propose a scheme of RIS...Reconfigurable intelligent surface(RIS)assisted dual-function radar communications(DFRC)system is a promising integrated sensing and communication(ISAC)technology for future 6G.In this paper,we propose a scheme of RIS-assisted DFRC system based on frequency shifted chirp spread spectrum index modulation(RDFI)for secure communications.The proposed RDFI achieves the sensing and transmission of target location information in its radar and communication modes,respectively.In both modes,the frequency-shifted chirp spread spectrum index modulation(FSCSS-IM)signal is used as the baseband signal for radar and communications,so that the signal sent by the radar also carries information.This scheme implements the RIS-assisted beamforming in the communication mode through the azimuth information of the target acquired in the radar mode,so that the signal received from the eavesdropper is distorted in amplitude and phase.In addition,this paper analyzes the radar measurement accuracy and communication security of the FSCSS-IM signal using ambiguity function and secrecy rate(SR)analysis,respectively.Simulation results show that RDFI achieves both excellent bit error rate(BER)performance and physical layer security of communications.展开更多
Due to the broadcast nature of wireless communications,users’data transmitted wirelessly is susceptible to security/privacy threats.Meanwhile,as a result of the limitation of spectrum resources,massive wireless conne...Due to the broadcast nature of wireless communications,users’data transmitted wirelessly is susceptible to security/privacy threats.Meanwhile,as a result of the limitation of spectrum resources,massive wireless connections will incur serious interference,which may damage the efficiency of data transmission.Therefore,improving both efficiency and secrecy of data transmission is of research significance.In this paper,we propose a wireless transmission scheme by taking both Secure Communication(SC)and Interference Management(IM)into account,namely SCIM.With this scheme,an SCIM signal is generated by the legitimate transmitter(Tx)and sent along with the desired signal,so that the SCIM signal can interact with and suppress the environmental interference at the legitimate receiver(Rx).Meanwhile,the SCIM signal may interfere with the eavesdropper in the coverage of legitimate transmission so as to deteriorate the eavesdropping performance.Therefore,the secrecy of desired transmission is improved.In this way,both the transmission efficiency and privacy are enhanced.Then,by taking various transmission preferences into account,we develop different implementations of SCIM,including Interference Suppression First SCIM(ISF-SCIM),Data Transmission First SCIM(DTF-SCIM),Anti-Eavesdropping First SCIM(AEF-SCIM),and Secrecy Rate Maximization SCIM(SRM-SCIM).Our in-depth simulation results have shown the proposed methods to effectively improve the efficiency and secrecy of the legitimate transmission.展开更多
Vehicular data misuse may lead to traffic accidents and even loss of life,so it is crucial to achieve secure vehicular data communications.This paper focuses on secure vehicular data communications in the Named Data N...Vehicular data misuse may lead to traffic accidents and even loss of life,so it is crucial to achieve secure vehicular data communications.This paper focuses on secure vehicular data communications in the Named Data Networking(NDN).In NDN,names,provider IDs and data are transmitted in plaintext,which exposes vehicular data to security threats and leads to considerable data communication costs and failure rates.This paper proposes a Secure vehicular Data Communication(SDC)approach in NDN to supress data communication costs and failure rates.SCD constructs a vehicular backbone to reduce the number of authenticated nodes involved in reverse paths.Only the ciphtertext of the name and data is included in the signed Interest and Data and transmitted along the backbone,so the secure data communications are achieved.SCD is evaluated,and the data results demonstrate that SCD achieves the above objectives.展开更多
The ultra-dense low earth orbit(LEO)integrated satellite-terrestrial networks(UDLEO-ISTN)can bring lots of benefits in terms of wide coverage,high capacity,and strong robustness.Meanwhile,the broadcasting and open nat...The ultra-dense low earth orbit(LEO)integrated satellite-terrestrial networks(UDLEO-ISTN)can bring lots of benefits in terms of wide coverage,high capacity,and strong robustness.Meanwhile,the broadcasting and open natures of satellite links also reveal many challenges for transmission security protection,especially for eavesdropping defence.How to efficiently take advantage of the LEO satellite’s density and ensure the secure communication by leveraging physical layer security with the cooperation of jammers deserves further investigation.To our knowledge,using satellites as jammers in UDLEO-ISTN is still a new problem since existing works mainly focused on this issue only from the aspect of terrestrial networks.To this end,we study in this paper the cooperative secrecy communication problem in UDLEOISTN by utilizing several satellites to send jamming signal to the eavesdroppers.An iterative scheme is proposed as our solution to maximize the system secrecy energy efficiency(SEE)via jointly optimizing transmit power allocation and user association.Extensive experiment results verify that our designed optimization scheme can significantly enhance the system SEE and achieve the optimal power allocation and user association strategies.展开更多
Future components to enhance the basic,native security of 5G networks are either complex mechanisms whose impact in the requiring 5G communications are not considered,or lightweight solutions adapted to ultrareliable ...Future components to enhance the basic,native security of 5G networks are either complex mechanisms whose impact in the requiring 5G communications are not considered,or lightweight solutions adapted to ultrareliable low-latency communications(URLLC)but whose security properties remain under discussion.Although different 5G network slices may have different requirements,in general,both visions seem to fall short at provisioning secure URLLC in the future.In this work we address this challenge,by introducing cost-security functions as a method to evaluate the performance and adequacy of most developed and employed non-native enhanced security mechanisms in 5G networks.We categorize those new security components into different groups according to their purpose and deployment scope.We propose to analyze them in the context of existing 5G architectures using two different approaches.First,using model checking techniques,we will evaluate the probability of an attacker to be successful against each security solution.Second,using analytical models,we will analyze the impact of these security mechanisms in terms of delay,throughput consumption,and reliability.Finally,we will combine both approaches using stochastic cost-security functions and the PRISM model checker to create a global picture.Our results are first evidence of how a 5G network that covers and strengthened all security areas through enhanced,dedicated non-native mechanisms could only guarantee secure URLLC with a probability of∼55%.展开更多
Non-Orthogonal Multiple Access(NOMA)has emerged as a novel air interface technology for massive connectivity in Sixth-Generation(6G)era.The recent integration of NOMA in Backscatter Communication(BC)has triggered sign...Non-Orthogonal Multiple Access(NOMA)has emerged as a novel air interface technology for massive connectivity in Sixth-Generation(6G)era.The recent integration of NOMA in Backscatter Communication(BC)has triggered significant research interest due to its applications in low-powered Internet of Things(IoT)networks.However,the link security aspect of these networks has not been well investigated.This article provides a new optimization framework for improving the physical layer security of the NOMA ambient BC system.Our system model takes into account the simultaneous operation of NOMA IoT users and the Backscatter Node(BN)in the presence of multiple EavesDroppers(EDs).The EDs in the surrounding area can overhear the communication of Base Station(BS)and BN due to the wireless broadcast transmission.Thus,the chief aim is to enhance link security by optimizing the BN reflection coefficient and BS transmit power.To gauge the performance of the proposed scheme,we also present the suboptimal NOMA and conventional orthogonal multiple access as benchmark schemes.Monte Carlo simulation results demonstrate the superiority of the NOMA BC scheme over the pure NOMA scheme without the BC and conventional orthogonal multiple access schemes in terms of system secrecy rate.展开更多
This paper is concerned with distributed Nash equi librium seeking strategies under quantized communication. In the proposed seeking strategy, a projection operator is synthesized with a gradient search method to achi...This paper is concerned with distributed Nash equi librium seeking strategies under quantized communication. In the proposed seeking strategy, a projection operator is synthesized with a gradient search method to achieve the optimization o players' objective functions while restricting their actions within required non-empty, convex and compact domains. In addition, a leader-following consensus protocol, in which quantized informa tion flows are utilized, is employed for information sharing among players. More specifically, logarithmic quantizers and uniform quantizers are investigated under both undirected and connected communication graphs and strongly connected digraphs, respec tively. Through Lyapunov stability analysis, it is shown that play ers' actions can be steered to a neighborhood of the Nash equilib rium with logarithmic and uniform quantizers, and the quanti fied convergence error depends on the parameter of the quan tizer for both undirected and directed cases. A numerical exam ple is given to verify the theoretical results.展开更多
Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical cha...Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical challenge in accomplishing automated vehicle platoons is to deal with the effects of intermittent and sporadic vehicle-to-vehicle data transmissions caused by limited wireless communication resources. This paper addresses the co-design problem of dynamic event-triggered communication scheduling and cooperative adaptive cruise control for a convoy of automated vehicles with diverse spacing policies. The central aim is to achieve automated vehicle platooning under various gap references with desired platoon stability and spacing performance requirements, while simultaneously improving communication efficiency. Toward this aim, a dynamic event-triggered scheduling mechanism is developed such that the intervehicle data transmissions are scheduled dynamically and efficiently over time. Then, a tractable co-design criterion on the existence of both the admissible event-driven cooperative adaptive cruise control law and the desired scheduling mechanism is derived. Finally, comparative simulation results are presented to substantiate the effectiveness and merits of the obtained results.展开更多
Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effect...Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods.展开更多
Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO sate...Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO satellite communication system cannot meet the requirements of users when the satellite-terrestrial link is blocked by obstacles. To solve this problem, we introduce Intelligent reflect surface(IRS) for improving the achievable rate of terrestrial users in LEO satellite communication. We investigated joint IRS scheduling, user scheduling, power and bandwidth allocation(JIRPB) optimization algorithm for improving LEO satellite system throughput.The optimization problem of joint user scheduling and resource allocation is formulated as a non-convex optimization problem. To cope with this problem, the nonconvex optimization problem is divided into resource allocation optimization sub-problem and scheduling optimization sub-problem firstly. Second, we optimize the resource allocation sub-problem via alternating direction multiplier method(ADMM) and scheduling sub-problem via Lagrangian dual method repeatedly.Third, we prove that the proposed resource allocation algorithm based ADMM approaches sublinear convergence theoretically. Finally, we demonstrate that the proposed JIRPB optimization algorithm improves the LEO satellite communication system throughput.展开更多
In order to address the problems of the single encryption algorithm,such as low encryption efficiency and unreliable metadata for static data storage of big data platforms in the cloud computing environment,we propose...In order to address the problems of the single encryption algorithm,such as low encryption efficiency and unreliable metadata for static data storage of big data platforms in the cloud computing environment,we propose a Hadoop based big data secure storage scheme.Firstly,in order to disperse the NameNode service from a single server to multiple servers,we combine HDFS federation and HDFS high-availability mechanisms,and use the Zookeeper distributed coordination mechanism to coordinate each node to achieve dual-channel storage.Then,we improve the ECC encryption algorithm for the encryption of ordinary data,and adopt a homomorphic encryption algorithm to encrypt data that needs to be calculated.To accelerate the encryption,we adopt the dualthread encryption mode.Finally,the HDFS control module is designed to combine the encryption algorithm with the storage model.Experimental results show that the proposed solution solves the problem of a single point of failure of metadata,performs well in terms of metadata reliability,and can realize the fault tolerance of the server.The improved encryption algorithm integrates the dual-channel storage mode,and the encryption storage efficiency improves by 27.6% on average.展开更多
Information and communication technologies are spreading rapidly due to their fast proliferation in many fields.The number of Internet users has led to a spike in cyber-attack incidents.E-commerce applications,such as...Information and communication technologies are spreading rapidly due to their fast proliferation in many fields.The number of Internet users has led to a spike in cyber-attack incidents.E-commerce applications,such as online banking,marketing,trading,and other online businesses,play an integral role in our lives.Network Intrusion Detection System(NIDS)is essential to protect the network from unauthorized access and against other cyber-attacks.The existing NIDS systems are based on the Backward Oracle Matching(BOM)algorithm,which minimizes the false alarm rate and causes of high packet drop ratio.This paper discussed the existing NIDS systems and different used pattern-matching techniques regarding their weaknesses and limitations.To address the existing system issues,this paper proposes an enhanced version of the BOM algorithm by using multiple pattern-matching methods for the NIDS system to improve the network performance.The proposed solution is tested in simulation with existing solutions using the Snort and NSL-KDD datasets.The experimental results indicated that the proposed solution performed better than the existing solutions and achieved a 5.17%detection rate and a 0.22%lower false alarm rate than the existing solution.展开更多
Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research pr...Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research problem.In certain mission environments,due to the impact of many interference sources on real-time communication or mission requirements such as the need to implement communication regulations,the mission stages are represented as a dynamic combination of several communication-available and communication-unavailable stages.Furthermore,the data interaction between unmanned aerial vehicles(UAVs)can only be performed in specific communication-available stages.Traditional cooperative search algorithms cannot handle such situations well.To solve this problem,this study constructed a distributed model predictive control(DMPC)architecture for a collaborative control of UAVs and used the Voronoi diagram generation method to re-plan the search areas of all UAVs in real time to avoid repetition of search areas and UAV collisions while improving the search efficiency and safety factor.An attention mechanism ant-colony optimization(AACO)algorithm is proposed for UAV search-control decision planning.The search strategy is adaptively updated by introducing an attention mechanism for regular instruction information,a priori information,and emergent information of the mission to satisfy different search expectations to the maximum extent.Simulation results show that the proposed algorithm achieves better search performance than traditional algorithms in restricted communication constraint scenarios.展开更多
Machine-to-machine (M2M) communication plays a fundamental role in autonomous IoT (Internet of Things)-based infrastructure, a vital part of the fourth industrial revolution. Machine-type communication devices(MTCDs) ...Machine-to-machine (M2M) communication plays a fundamental role in autonomous IoT (Internet of Things)-based infrastructure, a vital part of the fourth industrial revolution. Machine-type communication devices(MTCDs) regularly share extensive data without human intervention while making all types of decisions. Thesedecisions may involve controlling sensitive ventilation systems maintaining uniform temperature, live heartbeatmonitoring, and several different alert systems. Many of these devices simultaneously share data to form anautomated system. The data shared between machine-type communication devices (MTCDs) is prone to risk dueto limited computational power, internal memory, and energy capacity. Therefore, securing the data and devicesbecomes challenging due to factors such as dynamic operational environments, remoteness, harsh conditions,and areas where human physical access is difficult. One of the crucial parts of securing MTCDs and data isauthentication, where each devicemust be verified before data transmission. SeveralM2Mauthentication schemeshave been proposed in the literature, however, the literature lacks a comprehensive overview of current M2Mauthentication techniques and the challenges associated with them. To utilize a suitable authentication schemefor specific scenarios, it is important to understand the challenges associated with it. Therefore, this article fillsthis gap by reviewing the state-of-the-art research on authentication schemes in MTCDs specifically concerningapplication categories, security provisions, and performance efficiency.展开更多
The Internet of Medical Things(IoMT)is a collection of smart healthcare devices,hardware infrastructure,and related software applications,that facilitate the connection of healthcare information technology system via ...The Internet of Medical Things(IoMT)is a collection of smart healthcare devices,hardware infrastructure,and related software applications,that facilitate the connection of healthcare information technology system via the Internet.It is also called IoT in healthcare,facilitating secure communication of remote healthcare devices over the Internet for quick and flexible analysis of healthcare data.In other words,IoMT is an amalgam of medical devices and applications,which improves overall healthcare outcomes.However,this system is prone to securityand privacy-related attacks on healthcare data.Therefore,providing a robust security mechanism to prevent the attacks and vulnerability of IoMT is essential.To mitigate this,we proposed a new Artificial-Intelligence envisioned secure communication scheme for IoMT.The discussed network and threat models provide details of the associated network arrangement of the IoMT devices and attacks relevant to IoMT.Furthermore,we provide the security analysis of the proposed scheme to show its security against different possible attacks.Moreover,a comparative study of the proposed scheme with other similar schemes is presented.Our results show that the proposed scheme outperforms other similar schemes in terms of communication and computation costs,and security and functionality attributes.Finally,we provide a pragmatic study of the proposed scheme to observe its impact on various network performance parameters.展开更多
文摘The working of a Mobile Ad hoc NETwork(MANET)relies on the supportive cooperation among the network nodes.But due to its intrinsic features,a misbehaving node can easily lead to a routing disorder.This paper presents two trust-based routing schemes,namely Trust-based Self-Detection Routing(TSDR)and Trust-based Cooperative Routing(TCOR)designed with an Ad hoc On-demand Distance Vector(AODV)protocol.The proposed work covers a wide range of security challenges,including malicious node identification and prevention,accurate trust quantification,secure trust data sharing,and trusted route maintenance.This brings a prominent solution for mitigating misbehaving nodes and establishing efficient communication in MANET.It is empirically validated based on a performance comparison with the current Evolutionary Self-Cooperative Trust(ESCT)scheme,Generalized Trust Model(GTM),and the conventional AODV protocol.The extensive simulations are conducted against three different varying network scenarios.The results affirm the improved values of eight popular performance metrics overcoming the existing routing schemes.Among the two proposed works,TCOR is more suitable for highly scalable networks;TSDR suits,however,the MANET application better with its small size.This work thus makes a significant contribution to the research community,in contrast to many previous works focusing solely on specific security aspects,and results in a trade-off in the expected values of evaluation parameters and asserts their efficiency.
基金funding from the Australian Government,via grant AUSMURIB000001 associated with ONR MURI Grant N00014-19-1-2571。
文摘We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reconfigurable intelligent surfaces(RISs) help to secure the UAV-target communication and improve the energy efficiency of the UAV.We formulate an optimization problem to minimize the energy consumption of the UAV,subject to the mobility constraint of the UAV and that the achievable secrecy rate at the target is over a given threshold.We present an online planning method following the framework of model predictive control(MPC) to jointly optimize the motion of the UAV and the configurations of the RISs.The effectiveness of the proposed method is validated via computer simulations.
基金supported in part by National Natural Science Foundation of China under Grant 62371004 and Grant 62301005in part by the University Synergy Innovation Program of Anhui Province under Grant GXXT-2022-055+1 种基金in part by the Natural Science Foundation of Anhui Province under Grant 2308085QF197in part by the Natural Science Research Project of Education Department of Anhui Province of China under Grant 2023AH051031。
文摘This work employs intelligent reflecting surface(IRS)to enhance secure and covert communication performance.We formulate an optimization problem to jointly design both the reflection beamformer at IRS and transmit power at transmitter Alice in order to optimize the achievable secrecy rate at Bob subject to a covertness constraint.We first develop a Dinkelbach-based algorithm to achieve an upper bound performance and a high-quality solution.For reducing the overhead and computational complexity of the Dinkelbach-based scheme,we further conceive a low-complexity algorithm in which analytical expression for the IRS reflection beamforming is derived at each iteration.Examination result shows that the devised low-complexity algorithm is able to achieve similar secrecy rate performance as the Dinkelbach-based algorithm.Our examination also shows that introducing an IRS into the considered system can significantly improve the secure and covert communication performance relative to the scheme without IRS.
文摘In an era characterized by digital pervasiveness and rapidly expanding datasets,ensuring the integrity and reliability of information is paramount.As cyber threats evolve in complexity,traditional cryptographic methods face increasingly sophisticated challenges.This article initiates an exploration into these challenges,focusing on key exchanges(encompassing their variety and subtleties),scalability,and the time metrics associated with various cryptographic processes.We propose a novel cryptographic approach underpinned by theoretical frameworks and practical engineering.Central to this approach is a thorough analysis of the interplay between Confidentiality and Integrity,foundational pillars of information security.Our method employs a phased strategy,beginning with a detailed examination of traditional cryptographic processes,including Elliptic Curve Diffie-Hellman(ECDH)key exchanges.We also delve into encrypt/decrypt paradigms,signature generation modes,and the hashes used for Message Authentication Codes(MACs).Each process is rigorously evaluated for performance and reliability.To gain a comprehensive understanding,a meticulously designed simulation was conducted,revealing the strengths and potential improvement areas of various techniques.Notably,our cryptographic protocol achieved a confidentiality metric of 9.13 in comprehensive simulation runs,marking a significant advancement over existing methods.Furthermore,with integrity metrics at 9.35,the protocol’s resilience is further affirmed.These metrics,derived from stringent testing,underscore the protocol’s efficacy in enhancing data security.
基金supported by National Natural Science Foundation of China (No. 61971149, 62071504, 62271208)in part by the Special Projects in Key Fields for General Universities of Guangdong Province (No. 2020ZDZX3025, 2021ZDZX056)+1 种基金in part by the Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515011657)in part by the Featured Innovation Projects of Guangdong Province of China (No. 2021KTSCX049)。
文摘Cascade index modulation(CIM) is a recently proposed improvement of orthogonal frequency division multiplexing with index modulation(OFDM-IM) and achieves better error performance.In CIM, at least two different IM operations construct a super IM operation or achieve new functionality. First, we propose a OFDM with generalized CIM(OFDM-GCIM) scheme to achieve a joint IM of subcarrier selection and multiple-mode(MM)permutations by using a multilevel digital algorithm.Then, two schemes, called double CIM(D-CIM) and multiple-layer CIM(M-CIM), are proposed for secure communication, which combine new IM operation for disrupting the original order of bits and symbols with conventional OFDM-IM, to protect the legitimate users from eavesdropping in the wireless communications. A subcarrier-wise maximum likelihood(ML) detector and a low complexity log-likelihood ratio(LLR) detector are proposed for the legitimate users. A tight upper bound on the bit error rate(BER) of the proposed OFDM-GCIM, D-CIM and MCIM at the legitimate users are derived in closed form by employing the ML criteria detection. Computer simulations and numerical results show that the proposed OFDM-GCIM achieves superior error performance than OFDM-IM, and the error performance at the eavesdroppers demonstrates the security of D-CIM and M-CIM.
基金supported by the National Science Fund for Young Scholars(Grant No.62201539)the Project of Innovation and Entrepreneurship Training for National Undergraduates(Grant No.202210356005)the project of Zhejiang University Student Science and Technology Innovation Activity Plan(Grant No.2023R409055)。
文摘Reconfigurable intelligent surface(RIS)assisted dual-function radar communications(DFRC)system is a promising integrated sensing and communication(ISAC)technology for future 6G.In this paper,we propose a scheme of RIS-assisted DFRC system based on frequency shifted chirp spread spectrum index modulation(RDFI)for secure communications.The proposed RDFI achieves the sensing and transmission of target location information in its radar and communication modes,respectively.In both modes,the frequency-shifted chirp spread spectrum index modulation(FSCSS-IM)signal is used as the baseband signal for radar and communications,so that the signal sent by the radar also carries information.This scheme implements the RIS-assisted beamforming in the communication mode through the azimuth information of the target acquired in the radar mode,so that the signal received from the eavesdropper is distorted in amplitude and phase.In addition,this paper analyzes the radar measurement accuracy and communication security of the FSCSS-IM signal using ambiguity function and secrecy rate(SR)analysis,respectively.Simulation results show that RDFI achieves both excellent bit error rate(BER)performance and physical layer security of communications.
基金supported in part by the Natural Science Foundation of Shaanxi Province under Grant Number 2021JM-143the Fundamental Research Funds for the Central Universities under Grant Number JB211502+5 种基金the Project of Key Laboratory of Science and Technology on Communication Network under Grant Number 6142104200412the National Natural Science Foundation of China under Grant Number 61672410the Academy of Finland under Grant Number 308087the China 111 project under Grant Number B16037JSPS KAKENHI under Grant Number JP20K14742and the Project of Cyber Security Establishment with Inter University Cooperation.
文摘Due to the broadcast nature of wireless communications,users’data transmitted wirelessly is susceptible to security/privacy threats.Meanwhile,as a result of the limitation of spectrum resources,massive wireless connections will incur serious interference,which may damage the efficiency of data transmission.Therefore,improving both efficiency and secrecy of data transmission is of research significance.In this paper,we propose a wireless transmission scheme by taking both Secure Communication(SC)and Interference Management(IM)into account,namely SCIM.With this scheme,an SCIM signal is generated by the legitimate transmitter(Tx)and sent along with the desired signal,so that the SCIM signal can interact with and suppress the environmental interference at the legitimate receiver(Rx).Meanwhile,the SCIM signal may interfere with the eavesdropper in the coverage of legitimate transmission so as to deteriorate the eavesdropping performance.Therefore,the secrecy of desired transmission is improved.In this way,both the transmission efficiency and privacy are enhanced.Then,by taking various transmission preferences into account,we develop different implementations of SCIM,including Interference Suppression First SCIM(ISF-SCIM),Data Transmission First SCIM(DTF-SCIM),Anti-Eavesdropping First SCIM(AEF-SCIM),and Secrecy Rate Maximization SCIM(SRM-SCIM).Our in-depth simulation results have shown the proposed methods to effectively improve the efficiency and secrecy of the legitimate transmission.
基金supported by the National Natural Science Foundation of China under Grant No.62032013the LiaoNing Revitalization Talents Program under Grant No.XLYC1902010.
文摘Vehicular data misuse may lead to traffic accidents and even loss of life,so it is crucial to achieve secure vehicular data communications.This paper focuses on secure vehicular data communications in the Named Data Networking(NDN).In NDN,names,provider IDs and data are transmitted in plaintext,which exposes vehicular data to security threats and leads to considerable data communication costs and failure rates.This paper proposes a Secure vehicular Data Communication(SDC)approach in NDN to supress data communication costs and failure rates.SCD constructs a vehicular backbone to reduce the number of authenticated nodes involved in reverse paths.Only the ciphtertext of the name and data is included in the signed Interest and Data and transmitted along the backbone,so the secure data communications are achieved.SCD is evaluated,and the data results demonstrate that SCD achieves the above objectives.
基金supported by National Key R&D Program of China(2022YFB3104200)in part by National Natural Science Foundation of China(62202386)+6 种基金in part by Basic Research Programs of Taicang(TC2021JC31)in part by Fundamental Research Funds for the Central Universities(D5000210817)in part by Xi’an Unmanned System Security and Intelligent Communications ISTC Centerin part by Special Funds for Central Universities Construction of World-Class Universities(Disciplines)and Special Development Guidance(0639022GH0202237 and 0639022SH0201237)in part by the Henan Key Scientific Research Program of Higher Education(23B510003,21A510008 and 21A510009)in part by Henan Key Scientific and Technological Projects(212102210553)。
文摘The ultra-dense low earth orbit(LEO)integrated satellite-terrestrial networks(UDLEO-ISTN)can bring lots of benefits in terms of wide coverage,high capacity,and strong robustness.Meanwhile,the broadcasting and open natures of satellite links also reveal many challenges for transmission security protection,especially for eavesdropping defence.How to efficiently take advantage of the LEO satellite’s density and ensure the secure communication by leveraging physical layer security with the cooperation of jammers deserves further investigation.To our knowledge,using satellites as jammers in UDLEO-ISTN is still a new problem since existing works mainly focused on this issue only from the aspect of terrestrial networks.To this end,we study in this paper the cooperative secrecy communication problem in UDLEOISTN by utilizing several satellites to send jamming signal to the eavesdroppers.An iterative scheme is proposed as our solution to maximize the system secrecy energy efficiency(SEE)via jointly optimizing transmit power allocation and user association.Extensive experiment results verify that our designed optimization scheme can significantly enhance the system SEE and achieve the optimal power allocation and user association strategies.
基金The publication is produced within the framework of Ramon Alcarria y Borja Bordel’s research projects on the occasion of their stay at Argonne Labs(Jose Castillejo’s 2021 grant)supported by the Ministry of Science,Innovation andUniversities through the COGNOS project.
文摘Future components to enhance the basic,native security of 5G networks are either complex mechanisms whose impact in the requiring 5G communications are not considered,or lightweight solutions adapted to ultrareliable low-latency communications(URLLC)but whose security properties remain under discussion.Although different 5G network slices may have different requirements,in general,both visions seem to fall short at provisioning secure URLLC in the future.In this work we address this challenge,by introducing cost-security functions as a method to evaluate the performance and adequacy of most developed and employed non-native enhanced security mechanisms in 5G networks.We categorize those new security components into different groups according to their purpose and deployment scope.We propose to analyze them in the context of existing 5G architectures using two different approaches.First,using model checking techniques,we will evaluate the probability of an attacker to be successful against each security solution.Second,using analytical models,we will analyze the impact of these security mechanisms in terms of delay,throughput consumption,and reliability.Finally,we will combine both approaches using stochastic cost-security functions and the PRISM model checker to create a global picture.Our results are first evidence of how a 5G network that covers and strengthened all security areas through enhanced,dedicated non-native mechanisms could only guarantee secure URLLC with a probability of∼55%.
文摘Non-Orthogonal Multiple Access(NOMA)has emerged as a novel air interface technology for massive connectivity in Sixth-Generation(6G)era.The recent integration of NOMA in Backscatter Communication(BC)has triggered significant research interest due to its applications in low-powered Internet of Things(IoT)networks.However,the link security aspect of these networks has not been well investigated.This article provides a new optimization framework for improving the physical layer security of the NOMA ambient BC system.Our system model takes into account the simultaneous operation of NOMA IoT users and the Backscatter Node(BN)in the presence of multiple EavesDroppers(EDs).The EDs in the surrounding area can overhear the communication of Base Station(BS)and BN due to the wireless broadcast transmission.Thus,the chief aim is to enhance link security by optimizing the BN reflection coefficient and BS transmit power.To gauge the performance of the proposed scheme,we also present the suboptimal NOMA and conventional orthogonal multiple access as benchmark schemes.Monte Carlo simulation results demonstrate the superiority of the NOMA BC scheme over the pure NOMA scheme without the BC and conventional orthogonal multiple access schemes in terms of system secrecy rate.
基金supported by the National Natural Science Foundation of China (NSFC)(62222308, 62173181, 62073171, 62221004)the Natural Science Foundation of Jiangsu Province (BK20200744, BK20220139)+3 种基金Jiangsu Specially-Appointed Professor (RK043STP19001)the Young Elite Scientists Sponsorship Program by CAST (2021QNRC001)1311 Talent Plan of Nanjing University of Posts and Telecommunicationsthe Fundamental Research Funds for the Central Universities (30920032203)。
文摘This paper is concerned with distributed Nash equi librium seeking strategies under quantized communication. In the proposed seeking strategy, a projection operator is synthesized with a gradient search method to achieve the optimization o players' objective functions while restricting their actions within required non-empty, convex and compact domains. In addition, a leader-following consensus protocol, in which quantized informa tion flows are utilized, is employed for information sharing among players. More specifically, logarithmic quantizers and uniform quantizers are investigated under both undirected and connected communication graphs and strongly connected digraphs, respec tively. Through Lyapunov stability analysis, it is shown that play ers' actions can be steered to a neighborhood of the Nash equilib rium with logarithmic and uniform quantizers, and the quanti fied convergence error depends on the parameter of the quan tizer for both undirected and directed cases. A numerical exam ple is given to verify the theoretical results.
基金supported in part by the Australian Research Council Discovery Early Career Researcher Award(DE200101128)。
文摘Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical challenge in accomplishing automated vehicle platoons is to deal with the effects of intermittent and sporadic vehicle-to-vehicle data transmissions caused by limited wireless communication resources. This paper addresses the co-design problem of dynamic event-triggered communication scheduling and cooperative adaptive cruise control for a convoy of automated vehicles with diverse spacing policies. The central aim is to achieve automated vehicle platooning under various gap references with desired platoon stability and spacing performance requirements, while simultaneously improving communication efficiency. Toward this aim, a dynamic event-triggered scheduling mechanism is developed such that the intervehicle data transmissions are scheduled dynamically and efficiently over time. Then, a tractable co-design criterion on the existence of both the admissible event-driven cooperative adaptive cruise control law and the desired scheduling mechanism is derived. Finally, comparative simulation results are presented to substantiate the effectiveness and merits of the obtained results.
文摘Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods.
基金supported by the National Key R&D Program of China under Grant 2020YFB1807900the National Natural Science Foundation of China (NSFC) under Grant 61931005Beijing University of Posts and Telecommunications-China Mobile Research Institute Joint Innovation Center。
文摘Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO satellite communication system cannot meet the requirements of users when the satellite-terrestrial link is blocked by obstacles. To solve this problem, we introduce Intelligent reflect surface(IRS) for improving the achievable rate of terrestrial users in LEO satellite communication. We investigated joint IRS scheduling, user scheduling, power and bandwidth allocation(JIRPB) optimization algorithm for improving LEO satellite system throughput.The optimization problem of joint user scheduling and resource allocation is formulated as a non-convex optimization problem. To cope with this problem, the nonconvex optimization problem is divided into resource allocation optimization sub-problem and scheduling optimization sub-problem firstly. Second, we optimize the resource allocation sub-problem via alternating direction multiplier method(ADMM) and scheduling sub-problem via Lagrangian dual method repeatedly.Third, we prove that the proposed resource allocation algorithm based ADMM approaches sublinear convergence theoretically. Finally, we demonstrate that the proposed JIRPB optimization algorithm improves the LEO satellite communication system throughput.
文摘In order to address the problems of the single encryption algorithm,such as low encryption efficiency and unreliable metadata for static data storage of big data platforms in the cloud computing environment,we propose a Hadoop based big data secure storage scheme.Firstly,in order to disperse the NameNode service from a single server to multiple servers,we combine HDFS federation and HDFS high-availability mechanisms,and use the Zookeeper distributed coordination mechanism to coordinate each node to achieve dual-channel storage.Then,we improve the ECC encryption algorithm for the encryption of ordinary data,and adopt a homomorphic encryption algorithm to encrypt data that needs to be calculated.To accelerate the encryption,we adopt the dualthread encryption mode.Finally,the HDFS control module is designed to combine the encryption algorithm with the storage model.Experimental results show that the proposed solution solves the problem of a single point of failure of metadata,performs well in terms of metadata reliability,and can realize the fault tolerance of the server.The improved encryption algorithm integrates the dual-channel storage mode,and the encryption storage efficiency improves by 27.6% on average.
文摘Information and communication technologies are spreading rapidly due to their fast proliferation in many fields.The number of Internet users has led to a spike in cyber-attack incidents.E-commerce applications,such as online banking,marketing,trading,and other online businesses,play an integral role in our lives.Network Intrusion Detection System(NIDS)is essential to protect the network from unauthorized access and against other cyber-attacks.The existing NIDS systems are based on the Backward Oracle Matching(BOM)algorithm,which minimizes the false alarm rate and causes of high packet drop ratio.This paper discussed the existing NIDS systems and different used pattern-matching techniques regarding their weaknesses and limitations.To address the existing system issues,this paper proposes an enhanced version of the BOM algorithm by using multiple pattern-matching methods for the NIDS system to improve the network performance.The proposed solution is tested in simulation with existing solutions using the Snort and NSL-KDD datasets.The experimental results indicated that the proposed solution performed better than the existing solutions and achieved a 5.17%detection rate and a 0.22%lower false alarm rate than the existing solution.
基金the support of the National Natural Science Foundation of China(Grant No.62076204)the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University(Grant No.CX2020019)in part by the China Postdoctoral Science Foundation(Grants No.2021M700337)。
文摘Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research problem.In certain mission environments,due to the impact of many interference sources on real-time communication or mission requirements such as the need to implement communication regulations,the mission stages are represented as a dynamic combination of several communication-available and communication-unavailable stages.Furthermore,the data interaction between unmanned aerial vehicles(UAVs)can only be performed in specific communication-available stages.Traditional cooperative search algorithms cannot handle such situations well.To solve this problem,this study constructed a distributed model predictive control(DMPC)architecture for a collaborative control of UAVs and used the Voronoi diagram generation method to re-plan the search areas of all UAVs in real time to avoid repetition of search areas and UAV collisions while improving the search efficiency and safety factor.An attention mechanism ant-colony optimization(AACO)algorithm is proposed for UAV search-control decision planning.The search strategy is adaptively updated by introducing an attention mechanism for regular instruction information,a priori information,and emergent information of the mission to satisfy different search expectations to the maximum extent.Simulation results show that the proposed algorithm achieves better search performance than traditional algorithms in restricted communication constraint scenarios.
基金the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia(Grant No.GRANT5,208).
文摘Machine-to-machine (M2M) communication plays a fundamental role in autonomous IoT (Internet of Things)-based infrastructure, a vital part of the fourth industrial revolution. Machine-type communication devices(MTCDs) regularly share extensive data without human intervention while making all types of decisions. Thesedecisions may involve controlling sensitive ventilation systems maintaining uniform temperature, live heartbeatmonitoring, and several different alert systems. Many of these devices simultaneously share data to form anautomated system. The data shared between machine-type communication devices (MTCDs) is prone to risk dueto limited computational power, internal memory, and energy capacity. Therefore, securing the data and devicesbecomes challenging due to factors such as dynamic operational environments, remoteness, harsh conditions,and areas where human physical access is difficult. One of the crucial parts of securing MTCDs and data isauthentication, where each devicemust be verified before data transmission. SeveralM2Mauthentication schemeshave been proposed in the literature, however, the literature lacks a comprehensive overview of current M2Mauthentication techniques and the challenges associated with them. To utilize a suitable authentication schemefor specific scenarios, it is important to understand the challenges associated with it. Therefore, this article fillsthis gap by reviewing the state-of-the-art research on authentication schemes in MTCDs specifically concerningapplication categories, security provisions, and performance efficiency.
基金The authors would like to thank the reviewers and the Associate Editor for their valuable suggestions that helped in improving the quality,readability and presentation of the paper.This work was supported by FCT/MCTES through national funds and when applicable co-funded EU funds under the Project UIDB/50008/2020by the Brazilian National Council for Research and Development(CNPq)via Grants No.431726/2018-3 and 313036/2020-9.
文摘The Internet of Medical Things(IoMT)is a collection of smart healthcare devices,hardware infrastructure,and related software applications,that facilitate the connection of healthcare information technology system via the Internet.It is also called IoT in healthcare,facilitating secure communication of remote healthcare devices over the Internet for quick and flexible analysis of healthcare data.In other words,IoMT is an amalgam of medical devices and applications,which improves overall healthcare outcomes.However,this system is prone to securityand privacy-related attacks on healthcare data.Therefore,providing a robust security mechanism to prevent the attacks and vulnerability of IoMT is essential.To mitigate this,we proposed a new Artificial-Intelligence envisioned secure communication scheme for IoMT.The discussed network and threat models provide details of the associated network arrangement of the IoMT devices and attacks relevant to IoMT.Furthermore,we provide the security analysis of the proposed scheme to show its security against different possible attacks.Moreover,a comparative study of the proposed scheme with other similar schemes is presented.Our results show that the proposed scheme outperforms other similar schemes in terms of communication and computation costs,and security and functionality attributes.Finally,we provide a pragmatic study of the proposed scheme to observe its impact on various network performance parameters.