Educational institutions are soft targets for the terrorist with massive and defenseless people.In the recent past,numbers of such attacks have been executed around the world.Conducting research,in order to provide a ...Educational institutions are soft targets for the terrorist with massive and defenseless people.In the recent past,numbers of such attacks have been executed around the world.Conducting research,in order to provide a secure environment to the educational institutions is a challenging task.This effort is motivated by recent assaults,made at Army Public School Peshawar,following another attack at Charsada University,Khyber Pukhtun Khwa,Pakistan and also the Santa Fe High School Texas,USA massacre.This study uses the basic technologies of edge computing,cloud computing and IoT to design a smart emergency alarm system framework.IoT is engaged in developing this world smarter,can contribute significantly to design the Smart Security Framework(SSF)for educational institutions.In the emergency situation,all the command and control centres must be informed within seconds to halt or minimize the loss.In this article,the SSF is proposed.This framework works on three layers.The first layer is the sensors and smart devices layer.All these sensors and smart devices are connected to the Emergency Control Room(ECR),which is the second layer of the proposed framework.The second layer uses edge computing technologies to process massive data and information locally.The third layer uses cloud computing techniques to transmit and process data and information to different command and control centres.The proposed system was tested on Cisco Packet Tracer 7.The result shows that this approach can play an efficient role in security alert,not only in the educational institutions but also in other organizations too.展开更多
The adopters of IoT face challenges with the surging Internet-based attacks on their IoT assets and inefficiencies within the technology. Unfortunately, IoT is overly distributed, still evolving and facing implementat...The adopters of IoT face challenges with the surging Internet-based attacks on their IoT assets and inefficiencies within the technology. Unfortunately, IoT is overly distributed, still evolving and facing implementation and security challenges. Given the above scenario, we argue that the IoT network should always be decentralized design, and security should be built by design. The paper is the design and construction of a decentralized IoT security framework, with the goal of making emerging IoT systems more resilient to attacks and supporting complex communication and resource sharing. The framework improves efficiency and scalability in IoT, exposes vulnerable subsystems and components as possible weak links to system compromise, and meets the requirements of a heterogeneous computing environment. Other features of the framework including efficient resource sharing, fault tolerance, and distributed storage support the Internet of Things. We discuss the design requirements and carry out the implementation of Proof of Concept and evaluation of our framework. Two underlying technologies: the actor model and the blockchain were used for the implementation. Our reason for choosing the actor model and blockchain is to compare its suitability for IoT integration in parallel. Hence, evaluation of the system is performed based on computational and memory efficiency, security, and scalability. We conclude from the evaluations that the actor-based implementation has better scalability than the block-chain-based implementation. Also, the blockchain seems to be computationally more intensive than the actors and less suitable for IoT systems.展开更多
Security issues are always difficult to deal with in mobile ad hoe networks. People seldom studied the costs of those security schemes respectively and for some security methods designed and adopted beforehand, their ...Security issues are always difficult to deal with in mobile ad hoe networks. People seldom studied the costs of those security schemes respectively and for some security methods designed and adopted beforehand, their effects are often investigated one by one. In fact, when facing certain attacks, different methods would respond individually and result in waste of resources. Making use of the cost management idea, we analyze the costs of security measures in mobile ad hoc networks and introduce a security framework based on security mechanisms cost management. Under the framework, the network system's own tasks can be finished in time and the whole network's security costs can be decreased. We discuss the process of security costs computation at each mobile node and in certain nodes groups. To show how to use the proposed security framework in certain applications, we give examples of DoS attacks and costs computation of defense methods. The results showed that more secure environment can be achieved based on the security framework in mobile ad hoc networks.展开更多
An integrated security framework for a semantic web is proposed based on the social intelligence of an individual's avoiding harm and preserving transaction logic-integrity. The framework extends the semantic web mod...An integrated security framework for a semantic web is proposed based on the social intelligence of an individual's avoiding harm and preserving transaction logic-integrity. The framework extends the semantic web model and controls the dynamic security of semantic web services, such as trust, logic and reasoning. It includes four layers, that is, a trust entrance layer, a social intelligence layer, a transaction layer, and a TCP/IP security protocols layer. The trust entrance layer deals with trustable features from users. Social intelligence layer is responsible for logical questions for a semantic web. The transaction layer carries out transaction reasoning. And the TCP/IP security protocols layer ensures security communication. These layers can cooperate to build closed-security-ring with different security grades. The integrated security framework provides an integrated security method for semantic web flow so that it is universal for various semantic web technologies.展开更多
The Internet of Medical Things(IoMT)is an online device that senses and transmits medical data from users to physicians within a time interval.In,recent years,IoMT has rapidly grown in the medicalfield to provide heal...The Internet of Medical Things(IoMT)is an online device that senses and transmits medical data from users to physicians within a time interval.In,recent years,IoMT has rapidly grown in the medicalfield to provide healthcare services without physical appearance.With the use of sensors,IoMT applications are used in healthcare management.In such applications,one of the most important factors is data security,given that its transmission over the network may cause obtrusion.For data security in IoMT systems,blockchain is used due to its numerous blocks for secure data storage.In this study,Blockchain-assisted secure data management framework(BSDMF)and Proof of Activity(PoA)protocol using malicious code detection algorithm is used in the proposed data security for the healthcare system.The main aim is to enhance the data security over the networks.The PoA protocol enhances high security of data from the literature review.By replacing the malicious node from the block,the PoA can provide high security for medical data in the blockchain.Comparison with existing systems shows that the proposed simulation with BSD-Malicious code detection algorithm achieves higher accuracy ratio,precision ratio,security,and efficiency and less response time for Blockchain-enabled healthcare systems.展开更多
Secure authentication and accurate localization among Internet of Things(IoT)sensors are pivotal for the functionality and integrity of IoT networks.IoT authentication and localization are intricate and symbiotic,impa...Secure authentication and accurate localization among Internet of Things(IoT)sensors are pivotal for the functionality and integrity of IoT networks.IoT authentication and localization are intricate and symbiotic,impacting both the security and operational functionality of IoT systems.Hence,accurate localization and lightweight authentication on resource-constrained IoT devices pose several challenges.To overcome these challenges,recent approaches have used encryption techniques with well-known key infrastructures.However,these methods are inefficient due to the increasing number of data breaches in their localization approaches.This proposed research efficiently integrates authentication and localization processes in such a way that they complement each other without compromising on security or accuracy.The proposed framework aims to detect active attacks within IoT networks,precisely localize malicious IoT devices participating in these attacks,and establish dynamic implicit authentication mechanisms.This integrated framework proposes a Correlation Composition Awareness(CCA)model,which explores innovative approaches to device correlations,enhancing the accuracy of attack detection and localization.Additionally,this framework introduces the Pair Collaborative Localization(PCL)technique,facilitating precise identification of the exact locations of malicious IoT devices.To address device authentication,a Behavior and Performance Measurement(BPM)scheme is developed,ensuring that only trusted devices gain access to the network.This work has been evaluated across various environments and compared against existing models.The results prove that the proposed methodology attains 96%attack detection accuracy,84%localization accuracy,and 98%device authentication accuracy.展开更多
The rise of the digital economy and the comfort of accessing by way of user mobile devices expedite human endeavors in financial transactions over the Virtual Private Network(VPN)backbone.This prominent application of...The rise of the digital economy and the comfort of accessing by way of user mobile devices expedite human endeavors in financial transactions over the Virtual Private Network(VPN)backbone.This prominent application of VPN evades the hurdles involved in physical money exchange.The VPN acts as a gateway for the authorized user in accessing the banking server to provide mutual authentication between the user and the server.The security in the cloud authentication server remains vulnerable to the results of threat in JP Morgan Data breach in 2014,Capital One Data Breach in 2019,and manymore cloud server attacks over and over again.These attacks necessitate the demand for a strong framework for authentication to secure from any class of threat.This research paper,propose a framework with a base of EllipticalCurve Cryptography(ECC)to performsecure financial transactions throughVirtual PrivateNetwork(VPN)by implementing strongMulti-Factor Authentication(MFA)using authentication credentials and biometric identity.The research results prove that the proposed model is to be an ideal scheme for real-time implementation.The security analysis reports that the proposed model exhibits high level of security with a minimal response time of 12 s on an average of 1000 users.展开更多
文摘Educational institutions are soft targets for the terrorist with massive and defenseless people.In the recent past,numbers of such attacks have been executed around the world.Conducting research,in order to provide a secure environment to the educational institutions is a challenging task.This effort is motivated by recent assaults,made at Army Public School Peshawar,following another attack at Charsada University,Khyber Pukhtun Khwa,Pakistan and also the Santa Fe High School Texas,USA massacre.This study uses the basic technologies of edge computing,cloud computing and IoT to design a smart emergency alarm system framework.IoT is engaged in developing this world smarter,can contribute significantly to design the Smart Security Framework(SSF)for educational institutions.In the emergency situation,all the command and control centres must be informed within seconds to halt or minimize the loss.In this article,the SSF is proposed.This framework works on three layers.The first layer is the sensors and smart devices layer.All these sensors and smart devices are connected to the Emergency Control Room(ECR),which is the second layer of the proposed framework.The second layer uses edge computing technologies to process massive data and information locally.The third layer uses cloud computing techniques to transmit and process data and information to different command and control centres.The proposed system was tested on Cisco Packet Tracer 7.The result shows that this approach can play an efficient role in security alert,not only in the educational institutions but also in other organizations too.
文摘The adopters of IoT face challenges with the surging Internet-based attacks on their IoT assets and inefficiencies within the technology. Unfortunately, IoT is overly distributed, still evolving and facing implementation and security challenges. Given the above scenario, we argue that the IoT network should always be decentralized design, and security should be built by design. The paper is the design and construction of a decentralized IoT security framework, with the goal of making emerging IoT systems more resilient to attacks and supporting complex communication and resource sharing. The framework improves efficiency and scalability in IoT, exposes vulnerable subsystems and components as possible weak links to system compromise, and meets the requirements of a heterogeneous computing environment. Other features of the framework including efficient resource sharing, fault tolerance, and distributed storage support the Internet of Things. We discuss the design requirements and carry out the implementation of Proof of Concept and evaluation of our framework. Two underlying technologies: the actor model and the blockchain were used for the implementation. Our reason for choosing the actor model and blockchain is to compare its suitability for IoT integration in parallel. Hence, evaluation of the system is performed based on computational and memory efficiency, security, and scalability. We conclude from the evaluations that the actor-based implementation has better scalability than the block-chain-based implementation. Also, the blockchain seems to be computationally more intensive than the actors and less suitable for IoT systems.
文摘Security issues are always difficult to deal with in mobile ad hoe networks. People seldom studied the costs of those security schemes respectively and for some security methods designed and adopted beforehand, their effects are often investigated one by one. In fact, when facing certain attacks, different methods would respond individually and result in waste of resources. Making use of the cost management idea, we analyze the costs of security measures in mobile ad hoc networks and introduce a security framework based on security mechanisms cost management. Under the framework, the network system's own tasks can be finished in time and the whole network's security costs can be decreased. We discuss the process of security costs computation at each mobile node and in certain nodes groups. To show how to use the proposed security framework in certain applications, we give examples of DoS attacks and costs computation of defense methods. The results showed that more secure environment can be achieved based on the security framework in mobile ad hoc networks.
基金The National Natural Science Foundation of China(No.60474037),Program for New Century Excellent Talents in Univer-sity (No.NCET-04-415).
文摘An integrated security framework for a semantic web is proposed based on the social intelligence of an individual's avoiding harm and preserving transaction logic-integrity. The framework extends the semantic web model and controls the dynamic security of semantic web services, such as trust, logic and reasoning. It includes four layers, that is, a trust entrance layer, a social intelligence layer, a transaction layer, and a TCP/IP security protocols layer. The trust entrance layer deals with trustable features from users. Social intelligence layer is responsible for logical questions for a semantic web. The transaction layer carries out transaction reasoning. And the TCP/IP security protocols layer ensures security communication. These layers can cooperate to build closed-security-ring with different security grades. The integrated security framework provides an integrated security method for semantic web flow so that it is universal for various semantic web technologies.
基金Taif University Researchers Supporting Project Number(TURSP-2020/98),Taif University,Taif,Saudi Arabia.
文摘The Internet of Medical Things(IoMT)is an online device that senses and transmits medical data from users to physicians within a time interval.In,recent years,IoMT has rapidly grown in the medicalfield to provide healthcare services without physical appearance.With the use of sensors,IoMT applications are used in healthcare management.In such applications,one of the most important factors is data security,given that its transmission over the network may cause obtrusion.For data security in IoMT systems,blockchain is used due to its numerous blocks for secure data storage.In this study,Blockchain-assisted secure data management framework(BSDMF)and Proof of Activity(PoA)protocol using malicious code detection algorithm is used in the proposed data security for the healthcare system.The main aim is to enhance the data security over the networks.The PoA protocol enhances high security of data from the literature review.By replacing the malicious node from the block,the PoA can provide high security for medical data in the blockchain.Comparison with existing systems shows that the proposed simulation with BSD-Malicious code detection algorithm achieves higher accuracy ratio,precision ratio,security,and efficiency and less response time for Blockchain-enabled healthcare systems.
文摘Secure authentication and accurate localization among Internet of Things(IoT)sensors are pivotal for the functionality and integrity of IoT networks.IoT authentication and localization are intricate and symbiotic,impacting both the security and operational functionality of IoT systems.Hence,accurate localization and lightweight authentication on resource-constrained IoT devices pose several challenges.To overcome these challenges,recent approaches have used encryption techniques with well-known key infrastructures.However,these methods are inefficient due to the increasing number of data breaches in their localization approaches.This proposed research efficiently integrates authentication and localization processes in such a way that they complement each other without compromising on security or accuracy.The proposed framework aims to detect active attacks within IoT networks,precisely localize malicious IoT devices participating in these attacks,and establish dynamic implicit authentication mechanisms.This integrated framework proposes a Correlation Composition Awareness(CCA)model,which explores innovative approaches to device correlations,enhancing the accuracy of attack detection and localization.Additionally,this framework introduces the Pair Collaborative Localization(PCL)technique,facilitating precise identification of the exact locations of malicious IoT devices.To address device authentication,a Behavior and Performance Measurement(BPM)scheme is developed,ensuring that only trusted devices gain access to the network.This work has been evaluated across various environments and compared against existing models.The results prove that the proposed methodology attains 96%attack detection accuracy,84%localization accuracy,and 98%device authentication accuracy.
文摘The rise of the digital economy and the comfort of accessing by way of user mobile devices expedite human endeavors in financial transactions over the Virtual Private Network(VPN)backbone.This prominent application of VPN evades the hurdles involved in physical money exchange.The VPN acts as a gateway for the authorized user in accessing the banking server to provide mutual authentication between the user and the server.The security in the cloud authentication server remains vulnerable to the results of threat in JP Morgan Data breach in 2014,Capital One Data Breach in 2019,and manymore cloud server attacks over and over again.These attacks necessitate the demand for a strong framework for authentication to secure from any class of threat.This research paper,propose a framework with a base of EllipticalCurve Cryptography(ECC)to performsecure financial transactions throughVirtual PrivateNetwork(VPN)by implementing strongMulti-Factor Authentication(MFA)using authentication credentials and biometric identity.The research results prove that the proposed model is to be an ideal scheme for real-time implementation.The security analysis reports that the proposed model exhibits high level of security with a minimal response time of 12 s on an average of 1000 users.